
A
cc

ep
te

d
 A

rt
ic

le

 
This article has been accepted for publication and undergone full peer review but has 
not been through the copyediting, typesetting, pagination and proofreading process, 
which may lead to differences between this version and the Version of Record. Please 
cite this article as doi: 10.1111/acel.12025 
© 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of 
Great Britain and Ireland 

Accepted Date : 19-Oct-2012 
Article type      : Original Paper 
 
 

A metabolic signature predicts biological age in mice 

 

Antonia Tomás-Loba1,#, Bruno Bernardes de Jesus1,#, Jose M. Mato2,  

and Maria A. Blasco1,* 

 

1 Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National 

Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, 

Spain 

 

2 CIC bioGUNE, CIBERehd, Derio, Technology Park of Bizkaia, Derio, E-48160, Spain 

 

 

 

# These authors equally contributed to this work 

* Correspondence: Maria A. Blasco 

Spanish National Cancer Research Centre (CNIO) 

3 Melchor Fernandez Almagro street 

Madrid E-28029, Spain 

Tel.:   +34.91.732.8031 

Fax:  +34.91.732.8028 

Email: mblasco@cnio.es 

 



A
cc

ep
te

d
 A

rt
ic

le
 

 
© 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of 
Great Britain and Ireland 

Running tittle: A metabolic signature of aging  

 

 

Our understanding of the mechanisms by which aging is produced is still 

very limited. Here, we have determined the sera metabolite profile of 117 wild-

type mice of different genetic backgrounds ranging from 8-129 weeks of age. 

This has allowed us to define a robust metabolomic signature and a derived 

metabolomic score that reliably/accurately predicts the age of wild-type mice. In 

the case of telomerase-deficient mice, which have a shortened lifespan, their 

metabolomic score predicts older ages than expected. Conversely, in the case of 

mice that over-express telomerase, their metabolic score corresponded to 

younger ages than expected. Importantly, telomerase reactivation late in life by 

using a TERT based gene therapy recently described by us, significantly 

reverted the metabolic profile of old mice to that of younger mice, further 

confirming an anti-aging role for telomerase. Thus, the metabolomic signature 

associated to natural mouse aging accurately predicts aging produced by 

telomere shortening, suggesting that natural mouse aging is in part produced by 

presence of short telomeres. These results indicate that the metabolomic 

signature is associated to the biological age rather than to the chronological age. 

This constitutes one of the first aging-associated metabolomic signatures in a 

mammalian organism. 

 

High throughput metabolite profiling technologies can be used to determine the 

metabolic status of whole organisms under conditions of interest, as well as to 

systematically define phenotypic patterns associated to mutant genotypes (Raamsdonk 

et al. 2001; Allen et al. 2003; Nicholson & Wilson 2003; Lewis et al. 2010). Here, we 

set to determine the metabolic profile of wild-type mice at different ages with the goal of 
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obtaining a metabolomic signature of natural mouse aging, which could serve as a 

predictive model to estimate the biological age, as well as that could allow to identify 

new biomarkers of aging. Furthermore, we reasoned that analysis of this age-related 

metabolomic signature in short-lived telomerase-deficient (Terc-/-) and long-lived TERT 

transgenics mice could serve to assess the contribution of telomere shortening and 

telomerase status to the metabolomic changes associated to natural mouse aging 

(Blasco et al. 1997; Lee et al. 1998; Herrera et al. 1999; Garcia-Cao et al. 2006; 

Tomas-Loba et al. 2008). A liquid chromatography-mass spectrometry (UPLCTM-MS) 

platform-based metabolomics approach was used to explore the relative levels of 

serum metabolites during mouse aging. To circumvent the potential influence of 

genetic background and gender in the metabolomic profile associated to mouse aging, 

117 serum samples were analyzed from wild-type mice of different genetic 

backgrounds (see materials and methods), and these samples included sera from both 

male (51) and female (66) mice with ages ranging from 8 to 129 weeks old. 

Furthermore, we also determined the metabolomic profiles of middle aged (1 year) and 

old (2 years) control wild-type mice compared to that of 2 yrs old mice treated with a 

TERT based gene therapy recently shown by us to reactivate telomerase and delay 

aging (see materials and methods) (Bernardes de Jesus et al. 2012). The only 

phenotypic distinction we have analyzed in the current manuscript is age. This could be 

viewed as one limitation of the current study since co-founding effects (such as disease 

or obesity) were not taken into account and could all render data interpretation difficult. 

The global metabolite profile was processed to create a multivariate model 

correlating the spectral data with the age of the wild-type samples. A predictive PLS 

model (Projection to Latent Structure; see materials and methods) was built and 

validated (Figure S1), obtaining a robust metabolomic model of aging for wild-type 

mice, which fits well a linear model (r2 = 0.944) (closed black diamonds in Figure 1a). 

Variable Influence on Projection (VIP) parameters and Spearman's rank correlation 
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coefficients (ρ) were examined for each metabolite, identifying the most influential 

biomarkers in the PLS model and ageing - correlative. Table 1 highlights a selection of 

48 biomarkers for which there is a significant correlation of wild-type samples with age 

(Spearman´s rank correlation test p-values < 0.05). These biomarkers include 

phospholipids, fatty acids, and organic acids, in agreement with the fact that the 

extraction methodology provides a maximum coverage over those families of 

compounds. 

We then used this wild-type mouse metabolomic signature of aging to predict 

the ages of first generation (G1) mice deficient in telomerase activity due to deletion of 

the telomerase RNA component or Terc (G1 Terc-/- mice). These mice show premature 

aging and decreased median and maximum longevity already at the first generation 

(Blasco et al. 1997; Lee et al. 1998; Herrera et al. 1999; Garcia-Cao et al. 2006). 

Interestingly, G1 Terc-/- mice showed a significantly older (p-value = 1.011 e-8) 

metabolic age when compared to wild-type mice of the same chronological age (red 

circles in Figure 1a). Thus, the metabolomic signature associated to physiological wild-

type mouse aging, accurately predicts aging produced by short telomeres owe to 

telomerase deficiency. These results suggest that physiological mouse aging is largely 

associated to the presence of short telomeres or to cellular conditions favoring 

telomere protection, such an increased load of tumor suppressors (Tomas-Loba et al. 

2008). Indeed, the increase in the percentage of short telomeres has shown to be 

correlated to the realized lifespan in mice (Vera et al. 2012). Next, we used our wild-

type mouse-aging metabolomic signature to predict the ages of transgenic mice over-

expressing the telomerase reverse transcriptase subunit or TERT in various stratified 

epithelia (K5-TERT mice). We have previously shown that K5-TERT mice have 

increased tissue fitness and a delayed aging (Gonzalez-Suarez et al. 2001; Gonzalez-

Suarez et al. 2005). Serum metabolomic profiles were not significantly different when 

comparing wild-type and TERT over-expressing mice of all age groups (5-140 weeks; 
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p-value = 0.534) (blue circles, Figure 1b). However, when we compared metabolic 

profiles of only adult/old mice (ages ranging from 60-140 weeks old), mice over-

expressing TERT showed a significantly younger (p-value = 3.051 e-5) metabolic age 

than wild-type animals (Figure 1b). To circumvent the cancer promoting activity of 

telomerase, we also determined the metabolomic profile of our recently generated 

TERT over-expressing mice with enhanced cancer resistance owe to increased 

expression of the tumor suppressors p53, p16 and p19ARF 

(Sp53/Sp16/SARF/TgTERT). Sp53/Sp16/SARF/TgTERT mice show a delayed aging 

and a 40% extension of the median lifespan (Tomas-Loba et al. 2008). Serum 

metabolomic profiles of Sp53/Sp16/SARF/TgTERT mice identified significant 

differences in metabolic age compared wild-type mice of the same chronological age, 

although the differences were not very robust (p-value = 0.031) when the complete 

range of ages (8-140 weeks old) was evaluated (green circles in Figure 1c). Again, 

when we compared the metabolic profile of adult/old Sp53/Sp16/SARF/TgTERT mice 

ranging in age from 60-140 weeks old, Sp53/Sp15/SARF/TgTERT mice showed a 

significantly younger (p-value = 0.012) metabolic age compared to wild-type mice of 

the same chronological age (green circles in Figure 1c). Delayed organismal aging 

and extended lifespan have also been demonstrated through improved damage 

protection by increasing the activity of the p53/ARF pathway in Sp53/Sp16/SARF mice 

(Matheu et al. 2007). Comparison of serum metabolomic profiles from 

Sp53/Sp16/SARF and wild-type mice identified modest but significant differences (p-

value = 0.045) when the complete range of ages (8-140 weeks old) was evaluated 

(purple circles, Figure 1d). These differences became more significant (p-value = 

0.004) when only adult/old mice (ages ranging between 60-140 weeks old) were 

compared (purple circles, Figure 1d), indicating that old Sp53/Sp16/SARF mice have 

significantly younger metabolic ages than age-matched wild-type mice. Together, these 

results support an impact of telomerase activity and telomere length, as well as of the 
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p53/p16/p19ARF tumor suppressors, on the metabolomic profile associated to natural 

mouse aging. 

Next, we followed the behavior of different metabolites associated to mouse 

aging. Figure 2 shows representative examples of selected biomarkers in sera from 

wild-type, G1 Terc-/- and TERT transgenic mice at various ages. Figures 2a,c,d, 

corresponding to a not determined metabolite (Rt = 7.4 min; m/z = 776.5798), 

sphingomyelin SM(d18:1/16:1), and glycerophosphoethanolamine PE(P-16:0/22:6) 

respectively, exemplify the metabolic discrimination of G1 Terc-/- mice from the other 

sample groups. In particular, the relative decrease in abundance of these biomarkers 

occurs on a much faster timescale for the G1 Terc-/- mutants than for wild-type mice or 

TERT transgenics. Figure 2b illustrates a biomarker, lysoglicerophosphocholine 

(LysoPC(18:3), showing distinct temporal evolutions in the 3 sample groups. In 

particular, its relative intensity remains more or less constant over time for the TERT 

transgenics, while a marked decrease with age is observed for wild-type and G1 Terc-/- 

mice, the relative change once more occurring much quicker in the latter group. 

Opposite trends (increased rather than decreased relative intensities) are shown in 

Figures 2e,f, corresponding to glycerophosphoethanolamines PE(16:0/18:2) and 

PE(16:0/22:6), respectively. Both of these biomarkers increase rapidly with age in the 

Terc-/- cohorts, while a less pronounced change is observed in WT mice. The 

intensities of these biomarkers do not show significant changes over time in the TERT 

transgenic group. Interestingly, some of the metabolites identified here (ie, 

sphingomyelin, glycerophosphoethanolamines) have been previously linked to 

neurodegenerative disorders and various aspects of aging and disease (Klunk et al. 

1997; Cutler & Mattson 2001). 

Recently, we reported that telomerase expression late in life by using a TERT 

based gene therapy strategy was sufficient to delay age-associated decay and to 

significantly extend mouse longevity (Bernardes de Jesus et al. 2012). Among other 



A
cc

ep
te

d
 A

rt
ic

le
 

 
© 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of 
Great Britain and Ireland 

beneficial effects of TERT treatment, we observed that mice treated with AAV9-TERT 

showed improved metabolic parameters including a better performance in glucose and 

insulin tolerance tests. To dissect the effects of TERT treatment on metabolism, here 

we studied the metabolomics profiles of 1 and 2 year old mice treated with TERT 

(AAV9-mTERT) or with a control vector (AAV9-eGFP). To this end, we first compared 

the metabolomics profile of 1 yrs old and 2 yrs old control mice treated with AAV9-

eGFP, which allowed to establish a set of metabolites that changed associated with 

aging (Table 2). Interestingly, we found that 2 months after TERT treatment, old mice 

(2 yrs old) showed a reversal of the metabolic signature associated to aging (Fig. 3). In 

particular, 2-year old mice treated with AAV9-mTERT showed a metabolic signature, 

which resembled the signature presented by the 1 yr old control mice. Therefore, 

expression of telomerase for 2 months in old mice partially rescues the age-associated 

metabolic decline (Figures 3 and 4). These results suggest metabolic changes related 

to the ageing process that can be reverted after treatment with AAV9-mTERT. 

Interestingly, some of the metabolites identified in the gene therapy TERT experiment 

were similar to those identified in the metabolic signature of aging. When we 

specifically studied some of these metabolites in the different experimental groups 

(Figure 4) we confirmed that they decreased associated with aging and that this 

decline was significantly reversed by TERT treatment. 

The existence of a metabolomic signature suggests that aging is accompanied 

by predictable metabolomic changes. This is akin to other aging-associated features 

that reflect on the appearance of tissues or in the performance of physiological 

systems. It is conceivable that physiological decline in important metabolic organs, 

such as liver, muscle, pancreas or adipose tissue, will reflect on the serum metabolite 

pattern. The identification of this signature is a first step to understand the metabolic 

alterations associated to aging and guide anti-aging interventions targeting 

metabolism. Recently, a study in humans demonstrated that metabolic profiles are age 
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dependent and might reflect different aging processes, such as incomplete 

mitochondrial fatty acid oxidation (Yu et al. 2012), demonstrating the importance of 

age-related metabolomic profiles. 

The age-biomarkers identified here include lipids and other small molecules 

such as creatine, methionine and uric acid. Whether these biomarkers play a role in 

aging or are due to secondary phenomena will require further investigation. Aberrant 

lipid homeostasis has been linked to a number of age-related diseases, including 

cardiovascular disease, inflammation, metabolic syndrome and type II diabetes 

(Maxfield & Tabas 2005). Creatine deficiency is associated with muscle loss 

(sarcopenia), a common condition in the elderly (Pearlman & Fielding 2006; Brosnan & 

Brosnan 2007). Moreover, creatine synthesis makes major demands of methionine 

(Brosnan & Brosnan 2007), another biomarker identified in this study whose levels 

decrease with age. Uric acid, which was found to increase with age, correlates with 

several risk factors, including renal dysfunction, hypertension, insulin resistance, and 

cardiovascular disease (Feig et al. 2008). A recent study using three different long-

lived mouse models (caloric restriction, insulin receptor substrate 1 knockout, and 

Ames dwarf) has identified several plasma biomarkers of aging using 1H NMR 

spectroscopy (Wijeyesekera et al. 2012). In this study a panel of metabolic differences 

was generated for each model relative to their controls, and then the three models 

were compared to one another. Although the age-biomarkers identified by this 

approach differed between the three models, they also included lipids, such as 

phosphatidylcholine, and small molecules (methionine, choline, creatine) that are 

coincident with our present findings. Taken together, these results suggest that 

changes in lipid homeostasis and one-carbon metabolism may be associated to the 

aging process. 

Finally, the fact that metabolomic changes associated to natural mouse aging 

can also predict aging provoked by accelerated telomere shortening owe to telomerase 
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deficiency provides strong evidence that telomere loss significantly contributes to 

natural mouse aging. This is further substantiated by our findings that TERT treatment 

is able to reverse some of the metabolic changes associated with aging. In a similar 

manner, the metabolomic signature described here can be used to enquire the 

contribution of other molecular pathways (ie, tumor suppression) to natural mouse 

aging, as well as to estimate the impact of genetic modifications or treatments on 

mouse aging. 

 

 

MATERIALS AND METHODS 

 

Mice and samples 

Mice were generated and housed at the Spanish National Cancer Research 

Center barrier area, where pathogen-free procedures are employed in all mouse rooms 

(Specific Pathogen Free (SPF) health status is assured through a comprehensive 

health surveillance program). Mice were under controlled room temperature and fed ad 

libitum with an irradiated diet (nº 2018, Harlan). All genetic backgrounds were kept 

under the same conditions. Wild-type mice used to establish a metabolomic signature 

of aging were from the following mouse lines maintained at the CNIO: AZD 

(SuperSIRT+/+; 100% C57BL/6 background)(Pfluger et al. 2008), AIU (ATM+/+; mixed 

C57BL/6-129sv background)(Barlow et al. 1996), RFC (Terc+/+; 100% C57BL/6 

background)(Blasco et al. 1997), RSZ (wild-type controls for Sp53/Sp16/SARF/TgTert 

and Sp53/Sp16/SARF transgenics both of a mixed 75% C57BL/6-25% DBA/2 

background)(Tomas-Loba et al. 2008), RPR (wild-type controls for K5-TRF2/K5-TERT; 

mixed 75% C57BL/6-25% DBA/2 background) (Munoz et al. 2005), RPP (wild-type 

controls for K5-TRF2/G1Terc-/-; 100% C57BL/6 background) (Munoz et al. 2005), RPT 

(XPF+/+; mixed C57BL/6-129sv background) (Tian et al. 2004) and RXS (wild-type 
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controls for K5-TERT both mixed 75% C57BL/6-25% DBA/2 and 100% C57BL/6 

backgrounds)(Gonzalez-Suarez et al. 2001). Mutant mouse lines used for comparative 

purposes were Sp53/Sp16/SARF and Sp53/Sp16/SARF/TgTert (mixed 75% C57BL/6-

25% DBA/2 background), K5-TERT (mixed 75% C57BL/6-25% DBA/2 background) 

and G1 Terc-/- (pure C57BL/6 background) (Gonzalez-Suarez et al. 2001; Matheu et al. 

2007; Tomas-Loba et al. 2008).  

Mice studied for TERT based gene therapy have been previously described 

(Bernardes de Jesus et al. 2012). Separate groups of mice were tail-vein injected with 

2x1012 vg (viral genomes)/animal of either AAV9-GFP at 1 year old (AAV9-GFP, n=15 

[47% males]); or AAV9-GFP and AAV9-mTERT at 2 years old (AAV9-GFP, n=11 [36% 

males]; AAV9-mTERT, n=19 [58% males]. Sera were collected 2 months post 

telomerase expression. 

Samples were extracted from facial vein before 12am after overnight fasting 

and collected in tubes without any anticoagulant. The samples were collected in a 

Specific Pathogen Free (SPF) area of CNIO and kept at room temperature until leaving 

this area (15 to 20min). Samples were maintained in ice for 10 additional minutes and 

centrifuged at 4ºC. The serum supernatant was then aliquoted and frozen at -80C, to 

minimize freeze-thaw degradation, until they were analyzed. For all the samples the 

procedure was the same. Procedures for sample extraction and storage were similar to 

those employed in other wide-coverage metabolomics approaches (Dunn et al. 2011). 

Housed mice followed the recommendations of the Federation of European Laboratory 

Animal Science Associations. 

 

Metabolic Profiling 

A global metabolite profiling UPLC®-MS methodology was employed where all 

endogenous metabolite related features, characterized by their mass-to-charge ratio 

m/z and retention time Rt, are included in a subsequent multivariate analysis procedure 
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used to study metabolic correlation between spectral data and age in the WT samples. 

Using the model built, age predictions of transgenic samples were obtained. Where 

possible, Rt-m/z features corresponding to putative biomarkers were later identified. 

Sample preparation and LC/MS analysis was performed as described in detail 

previously (Barr et al. 2010). Briefly, liquid-liquid extraction of the metabolites was 

performed by protein precipitation of 50 μL defrosted serum with four volumes of 

methanol. After brief vortex mixing the samples were incubated overnight at -20 ˚C. 

Supernatants were collected after centrifugation at 13,000 rpm for 10 minutes, and 

transferred to vials for UPLC®-MS analysis. Chromatography was performed on a 1 

mm i.d. × 100 mm ACQUITY 1.7 µm C8 BEH column (Waters Corp., Milford, USA) 

using an ACQUITY UPLC® system (Waters Corp., Milford, USA). The volume of 

sample injected onto the column was 2 μL. The eluent was introduced into the mass 

spectrometer (QTOF PremierTM, Waters Corp., Milford, USA) by electrospray 

ionisation, with capillary and cone voltages set in the positive and negative ion modes 

to 3200 V and 30 V, and 2800 V and 50 V respectively. The nebulisation gas was set 

to 600 L/h at a temperature of 350 ºC. The cone gas was set to 30 L/h and the source 

temperature set to 150 ºC. All spectra were mass corrected in real time by reference to 

leucine enkephalin, infused at 50 µL/min through an independent reference 

electrospray, sampled every 10 s. An appropriate test mixture of standard compounds 

was analyzed before and after the entire set of randomized, duplicated sample 

injections in order to examine the retention time stability (generally < 6 s variation, 

injection-to-injection), mass accuracy (generally < 3 ppm for m/z 400-1000, and < 1.2 

mDa for m/z 50-400) and sensitivity of the system throughout the course of the run 

which lasted a maximum of 26 h per batch of samples injected. 

The analytical methodology was designed to provide maximum coverage over 

phospholipids, fatty acids, and organic acids, whilst offering relatively high-throughput 

with minimum injection-to-injection carryover effects.  
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Data analysis 

All data were processed using the MarkerLynx application manager for 

MassLynx 4.1 software (Waters Corp., Milford, USA). The LC/MS data are peak-

detected and noise-reduced in both the LC and MS domains such that only true 

analytical peaks are further processed by the software (e.g. noise spikes are rejected). 

A list of intensities (chromatographic peak areas) of the peaks detected is then 

generated for the first chromatogram, using the Rt-m/z data pairs as identifiers. This 

process is repeated for each LC-MS analysis and the data sorted such that the correct 

peak intensity data for each Rt-m/z pair are aligned in the final data table. The ion 

intensities for each peak detected are then normalized, within each sample, to the sum 

of the peak intensities in that sample. There were no significant differences (F < Fcrit) 

between the total intensities used for normalization and the sample groups being 

compared in the study. The resulting normalized peak intensities form a single matrix 

with Rt-m/z pairs for each file in the dataset. All processed data, positive and negative 

ion modes, were mean centered and unit variance scaled during multivariate data 

analysis. 

 

Multivariate data analysis 

The first objective in the data analysis process was to create a multivariate 

model able to correlate the spectral data and WT samples’ age. The predictive 

multivariate modelling was carried out using the SIMCA - P+ (version 12.0.1; Umetrics, 

Sweden) software. Projection to Latent Structure (PLS) is a very useful statistical 

technique when there are a lot of highly correlated prediction variables 

(multicollinearity). This supervised pattern recognition method relates the two data 

matrices, e.g. Rt-m/z pair data (X matrix) and age (Y matrix), extracting the limited 

number of latent factors (which are linear combinations of the original prediction 

variables) that explain as much as possible the covariance the matrices and allowing 
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that the response variable Y could be predicted from X. The performance of the PLS 

model was evaluated using the R2Y and Q2 parameters. R2Y provides an indication of 

how much of the variation within the data set can be explained by the model. Q2 

parameter describes the predictive ability of model to estimate the Y data (a Q2 score 

between 0.6 – 1.0 is indicative of a reliable classifier) 

 

Validation of PLS models.  

The best validation of a model is the analysis of an independent and 

representative set of samples that does not form part of the model-building population. 

However, the reduced sample size of wild-type mice over 100 weeks old, necessary for 

the prediction of the long-lived TERT transgenic mice, limited the splitting of the 

samples into a test and a validation group. As recommended by (Wold et al. 2001), we 

followed two ways of PLS model validation: cross validation and model re-estimation. 

Component-wise cross-validation was carried out, calculating R2Y and Q2 parameters 

by iteratively leaving out 1/7th of the samples from the model and predicting their group 

classification. Paired sample injections were randomly distributed over the cross-

validation groups (7-fold), minimizing the risk of calculating falsely predictive 

components. Additionally, 200 parallel PLS models permuting randomly the Y data 

respecting their related X data set were generated. The comparison of the estimated 

values of R2Y and Q2 of the parallels and original model gives an indication of the 

statistical significance of the predictive power of the PLS model. If the original model is 

valid, randomization of the Y data would be expected to considerably reduce Q2. As 

can be seen in Supplementary figure 1, most of the models obtained through this 

randomization were non predictive (negative Q2). 
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Predictions of transgenic samples.  

PLS model from WT samples was used to predict ages of mice lacking 

telomerase activity (G1 Terc-/-), over-expressing telomerase reverse transcriptase (K5-

Tert), simultaneously over-expressing K5-Tert, p53 and p19ARF, and over-expressing 

p53 and p19ARF. 

Differences between transgenic and WT predicted ages were evaluated by 

calculating the unpaired student’s t-test p-values after data normalization with respect 

the real age. 

 

Metabolite biomarker selection according to the age correlation. 

Variable Influence on Projection (VIP) in PLS models statistic represents the 

value of each X variable in fitting the PLS model, measuring the importance of those 

variables with respect to its correlation to the Y data. In the present work, Rt-m/z pair 

data with a larger VIP-value are the most influential for the model and those with VIP-

values lower than 0.7 are considered to have small contribution to the prediction. 

Additionally, Spearman's rank correlation coefficient (ρ) for each selected 

metabolite biomarker was calculated. The Spearman correlation coefficient is a 

nonparametric measure of correlation between two variables, indicating with the sign 

the direction of association between the independent variable (Rt-m/z pair) and the 

dependent variable (Age), e.g. if Age-variable tends to increase when Rt-m/z pair 

increases, the Spearman correlation coefficient is positive. Only P-values derived from 

the Spearman's rank correlation coefficient lower than 0.05 were considered in the 

metabolite biomarker selection. 

 

Multivariate analysis of AAV9-eGFP and AAV9-mTERT mice  

Principal components analysis PCA analysis of the data set was performed to 

enable easy visualisation of any metabolic clustering of the different groups of samples 
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(Figures 3). In PCA, the data matrix is reduced to a series of principal components 

(PCs), each a linear combination of the original Rt-m/z pair peak areas. Each 

successive PC explains the maximum amount of variance possible, not accounted for 

by the previous PCs. 

The orthogonal partial least-squares to latent structures discriminant analysis 

(OPLS-DA) method were used for the identification of metabolites contributing to the 

clustering observed in the PCA plots. The performance of the OPLS-DA model was 

evaluated using Q2Y parameter, which describes the predictive ability of model to 

estimate the Y data, and calculated by iteratively leaving out samples from the model 

and predicting their group classification. Paired sample injections were randomly 

distributed over the cross-validation groups (7-fold), minimizing the risk of calculating 

falsely predictive components. Appropriate filtration of the loading profile associated 

with the OPLS-DA predictive components resulted in a set of candidate biomarkers 

that were further evaluated by calculating group percentage changes and unpaired 

Student’s t-test p-values. 

One-way ANOVA with Tukey's Multiple Comparison Test has been used for 

statistical comparisons of Figure 4. 

 

Metabolite biomarker identification.  

Exact molecular mass data from redundant m/z peaks corresponding to the 

formation of different parent (e.g. cations in the positive ion mode, anions in the 

negative ion mode, adducts, multiple charges) and product (formed by spontaneous 

“in-source” CID) ions were first used to help confirm the metabolite molecular mass. 

This information was then submitted for database searching, either in-house or using 

the online ChemSpider database (www.chemspider.com) where the Kegg, Human 

Metabolome Database and Lipid Maps data source options were selected. MS/MS 
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data analysis highlights neutral losses or product ions, which are characteristic of 

metabolite groups and can serve to discriminate between database hits. 
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Table 1: Selection of ageing serum metabolic biomarkers. 

 

Rt 
(min) 

m/z 
(Da/e) 

Ion ID Spearman´s 
rho 

P-value VIP 

7.11 774.5646 [M+H]+ ND -0.64987 5.23 x 10-11 3.335 

6.90 719.5687 [M+H]+ ND -0.54365 1.56 x 10-7 2.999 

3.67 378.2400 [M-H]- Sphingosine 1 - phosphate -0.50817 1.28 x 10-6 0.917 

6.52 608.4578 ND ND -0.49980 2.03 x 10-6 1.264 

6.54 717.5526 ND ND -0.47733 6.62 x 10-6 2.166 

6.78 745.5492 [M+FA]- SM(d18:1/16:1) -0.46557 1.19 x 10-5 1.492 

7.40 776.5789 [M+H]+ ND -0.39461 2.67 x 10-4 3.393 

4.74 480.3082 [M-H]- LysoPE(18:0) -0.38019 4.64 x 10-4 0.944 

3.81 542.3239 [M+H]+ LysoPC(20:5) 0.37572 5.47 x 10-4 1.460 

0.62 160.1316 [M+H]+ 2-aminooctanoic acid 0.36586 7.83 x 10-4 1.896 

0.82 204.1236 [M+H]+ L-Acetylcarnitine -0.32805 2.79 x 10-3 1.161 

0.60 147.0769 [M+H]+ Glutamine -0.31736 3.89 x 10-3 1.445 

7.50 826.5595 [M+FA]- PC(18:2/18:2) -0.31388 4.32 x 10-3 0.929 

2.98 481.2043 ND ND -0.31254 4.50 x 10-3 1.044 

4.25 502.2935 [M+FA-MFA]- LysoPE (20:3) -0.29817 6.86 x 10-3 1.738 

6.02 305.2474 [M-H]- Eicosatrienoic acid 0.29803 6.89 x 10-3 0.916 

7.88 722.5129 [M-H]- PE (P-16:0/20:4) -0.29592 7.31 x 10-3 1.221 

7.31 774.5367 [M+FA]- PE (14:0/18:2) -0.29171 8.23 x 10-3 1.528 

0.84 150.0588 [M+H]+ L-Methionine -0.28323 0.0104 0.857 

5.38 269.2268 ND ND 0.28115 0.0110 1.054 

7.17 747.5637 [M+FA]- SM(d18:1/16:0) -0.27966 0.0115 1.060 

4.17 452.2764 [M-H]- LysoPE(16:0) -0.27951 0.0115 1.134 

6.76 721.5845 [M+H]+ ND -0.27871 0.0118 0.877 

7.70 768.5907 [M+H]+ ND -0.27472 0.0131 0.970 

6.61 447.3831 ND ND -0.26165 0.0183 1.231 

7.29 773.5794 [M+FA]- SM(36:2) -0.25655 0.0208 1.373 

0.60 132.0771 [M+H]+ Creatine -0.25449 0.0219 1.383 

7.91 778.5623 [M+FA]- PC (16:0/16:0) -0.24690 0.0263 1.108 

7.74 772.5875 [M+H]+ PC(17:0/18:2) -0.24509 0.0274 1.162 

6.97 778.5341 ND ND 0.24449 0.0278 1.136 

0.61 116.0710 [M+H]+ Proline -0.24321 0.0287 1.263 

4.63 536.3651 ND ND 0.24095 0.0302 1.096 

7.38 744.5543 [M+H]+ PC(15:0/18:2) -0.24050 0.0306 1.347 

7.60 716.5233 [M+H]+ PE(16:0/18:2) -0.23397 0.0355 1.164 

7.60 748.5272 [M+H]+ PE(P-16:0/22:6) -0.22895 0.0398 1.203 

0.55 167.0198 [M-H]- Uric acid 0.22832 0.0404 1.605 

7.46 764.5225 [M+H]+ PE(16:0/22:6) -0.22750 0.0411 1.109 

5.84 325.3203 ND ND 0.22342 0.0450 1.125 

7.42 800.5449 [M+FA]- PC(34:3) -0.22217 0.0462 0.964 

5.39 296.2590 [M+ACN+H]+ Palmitoleic acid 0.21926 0.0492 0.944 

0.57 124.0079 [M+H]+ Taurine 0.25912 0.0195 0.718 

4.22 279.2307 [M+H]+ Linolenic acid 0.27863 0.0118 0.717 
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5.99 283.2627 [M+H]+ Oleic acid 0.24274 0.0290 0.739 

6.61 652.4550 ND ND -0.33682 2.11 x 10-3 0.797 

7.47 850.5606 [M+H]+ PC(16:0/22:6) -0.24003 0.0309 1.090 

7.50 832.5889 [M+H]+ PC(40:7) 0.27525 0.0129 0.604 

7.99 808.5871 [M+H]+ PC(38:5) 0.27729 0.0122 0.860 

8.11 766.5396 [M+H]+ PE(38:4) -0.38345 4.10 x 10-4 1.135 

 

Peaks are listed for which there is significant correlation of wild-type samples with age 

[Spearman´s rank correlation test p-values < 0.05]. Rt (min), chromatographic retention 

time; m/z (Da/e) [m is the neutral molecular mass value, e is the elemental charge], 

mass-to-charge ratio of ion detected; Ion, most intense species observed; ID, 

metabolite name (lipid names follow the LIPID MAPS classification system for lipids 

www.lipidmaps.org); Spearman´s rho, Spearman´s rank correlation coefficient; p-value, 

p-value derived from the Spearman´s rank correlation coefficient; VIP, Variable 

Influence on Projection parameter. ND, not determined.  
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Table 2: Selection of biomarkers distinguishing one and two year old AAV9-GFP and 

comparison of two year old AAV9-GFP and AAV9-TERT treated mice. 

Rt 
(min) 

m/z 
(Da/e) Ion ID 

AAV9-eGFP 2yr old/ 
1yr old 

2yr old AAV9-mTERT/ 
2yr old AAV9-eGFP 

Fold-
change

p-value 
Fold-

change 
p-value 

6.15 717.5180 [M+FA]- SM32:2 0.36 1.12 x 10-6 2.63 1.30 x 10-6

3.88 564.3295 [M+FA]- LysoPC(18:2) 0.60 1.62 x 10-6 1.52 1.34 x 10-4

6.42 283.2631 [M-H]- (18/0) Stearic acid 0.48 1.86 x 10-6 1.84 4.96 x 10-6

4.41 528.3083 ND ND 0.26 2.01 x 10-6 3.26 2.50 x 10-6

3.62 512.2981 [M+FA]- LysoPC(14:0) 0.50 3.01 x 10-6 1.90 3.71 x 10-6

5.81 255.2321 [M-H] (16/0) Palmitic acid 0.44 3.62 x 10-6 1.75 1.21 x 10-5

4.10 540.3247 [M+FA]- LysoPC(16:0) 0.77 3.75 x 10-6 1.32 1.98 x 10-5

5.20 277.2150 [M-H]- (18/3n-6) Gamma-Linolenic acid 0.41 4.15 x 10-6 1.85 7.34 x 10-5

4.37 297.2425 ND ND 0.39 4.35 x 10-6 1.91 7.04 x 10-4

5.80 305.2474 [M-H]- (20/3n-9) 5,8,11-Eicosatrienoic acid 0.28 6.07 x 10-6 2.07 5.61 x 10-3

5.20 301.2155 [M-H]- (20/5n-3) 5,8,11,14,17-Eicosapentaenoic acid 0.32 7.38 x 10-6 2.23 2.33 x 10-4

4.00 500.2761 [M-H]- LysoPE(20:4) 0.51 1.08 x 10-5 1.79 1.42 x 10-4

3.02 423.1231 ND ND 0.21 1.42 x 10-5 4.53 4.72 x 10-5

2.59 300.2017 ND ND 0.47 1.50 x 10-5 2.11 2.30 x 10-4

3.68 586.3120 [M+FA]- LysoPC(20:5) 0.30 1.77 x 10-5 2.28 1.98 x 10-4

5.37 321.2028 ND ND 0.25 1.81 x 10-5 2.65 7.38 x 10-4

3.94 552.3198 [M+FA-MFA]- LysoPC(22:6) 0.53 1.86 x 10-5 1.80 1.34 x 10-5

5.03 277.2156 [M-H]- (18/3n-3) Alpha-Linolenic acid 0.32 3.78 x 10-5 2.27 6.49 x 10-5

7.57 944.5649 ND ND 1.61 3.82 x 10-5 0.57 1.79 x 10-4

2.66 326.7101 ND ND 0.41 4.14 x 10-5 2.70 1.51 x 10-4

3.93 588.3280 [M+FA]- LysoPC(20:4) 0.53 4.26 x 10-5 1.96 3.45 x 10-6

5.99 603.2928 ND ND 0.35 4.38 x 10-5 1.57 2.31 x 10-5

4.30 566.3456 [M+FA]- LysoPC(18:1) 0.61 4.68 x 10-5 2.95 3.04 x 10-5

2.58 195.1178 ND ND 0.36 5.15 x 10-5 2.35 1.51 x 10-4

2.66 652.4113 ND ND 0.47 5.71 x 10-5 2.02 8.87 x 10-6

4.00 524.2758 [M-H]- LysoPE(22:6) 0.53 5.76 x 10-5 1.98 1.11 x 10-4

2.60 388.2538 ND ND 0.53 5.95 x 10-5 2.46 7.18 x 10-5

5.67 329.2474 [M-H]- 
(22/5n-3) 7,10,13,16,19-Docosapentaenoic 

acid 
0.33 6.06 x 10-5 1.50 3.44 x 10-3

5.99 281.2479 [M-H]- (18/1n-9) Oleic acid 0.49 6.09 x 10-5 1.82 2.49 x 10-6

4.02 612.3282 [M+FA]- LysoPC(22:6) 0.58 6.12 x 10-5 1.31 4.63 x 10-4

3.97 564.3266 [M+FA]- LysoPC(18:2) 0.71 9.93 x 10-5 1.74 5.97 x 10-5

6.01 331.2632 [M-H]- (22/4n-6) 7,10,13,16-Docosatetraenoic acid 0.47 1.03 x 10-4 1.68 8.65 x 10-6

4.02 588.3294 [M+FA]- LysoPC(20:4) 0.60 1.08 x 10-4 1.35 4.59 x 10-2

3.93 476.2758 [M-H]- LysoPE(18:2) 0.59 1.22 x 10-4 2.03 2.96 x 10-4

6.11 281.2470 [M-H]- (18/1n-x) 0.40 2.88 x 10-4 2.33 9.40 x 10-5

5.99 621.3031 ND ND 0.36 3.01 x 10-4 1.83 3.35 x 10-5

6.66 638.4756 [M+FA]- PC(O-24:0/0:0) 0.52 4.04 x 10-4 2.31 9.07 x 10-5

6.80 733.5489 [M+FA]- SM(d18:1/15:0) 0.57 4.23 x 10-4 2.02 1.01 x 10-7

5.83 329.2474 [M-H]- 
(22/5n-6) 4,7,10,13,16-Docosapentaenoic 

acid 0.42 4.35 x 10-5 1.92 5.42 x 10-5

5.49 327.2314 [M-H]- (22/6n-3) 4,7,10,13,16,19-Docosahexaenoic 0.48 6.43 x 10-4 1.88 6.99 x 10-6
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acid 

4.39 494.3241 [M+FA-MFA]- LysoPC(17:0) 0.62 7.43 x 10-4 2.63 1.30 x 10-6

5.55 303.2318 [M-H]- (20/4n-6) Arachidonic acid 0.50 1.04 x 10-3 1.52 1.34 x 10-4

 

Peaks are listed for which there is significant correlation of wild-type samples with age 

[test p-values < 0.05]. Rt (min), chromatographic retention time; m/z (Da/e) [m is the 

neutral molecular mass value, e is the elemental charge], mass-to-charge ratio of ion 

detected; Ion, most intense species observed; ID, metabolite name (lipid names follow 

the LIPID MAPS classification system for lipids www.lipidmaps.org); ND, not 

determined.  

 

 
 
 
FIGURE LEGENDS 
 

Figure 1. Age predictions with respect to the wild-type mice metabolomic 

signature. The wild-type mice metabolomic ageing changes (black diamonds) fits a 

linear model: Predicted Age =0.934·Actual Age + 3.971 (r2=0.944). A) G1 Terc-/- 

samples (red circles); B) K5-Tert samples (blue circles); C) Sp53/Sp16/Sp19Arf/K5-

Tert samples (green circles); D) Sp53/Sp16/Sp19Arf samples (purple circles). p-values 

for Fig. 1 b-d correspond only to mice over 60 months of age. 

 

Figure 2. Metabolite profile plots (mean ± 1 standard error of the mean). A) Rt = 7.4 

min, m/z = 776.5789 (not determined); B) LysoPE(20:3); C) SM(d18:1/16:1); D) PE(P-

16:0/22:6); E) PE(16:0/18:2); F) PE(16:0/22:6). WT samples (black); K5-Tert samples 

(blue); Terc-/- samples (red). 

 

Figure 3. PCA scores plot discriminating two years old AAV9-GFP from one year 

old AAV9-GFP and two years old AAV9-mTERT treated mice. Duplicate sample 



A
cc

ep
te

d
 A

rt
ic

le
 

 
© 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of 
Great Britain and Ireland 

injection data are shown (duplicate sample extracts were injected in each ionization 

mode as quality controls). 

 

Figure 4: Profile plot of biomarkers. Raw intensity data, including average group 

intensities, number of samples and p-values, corresponding to the highlighted 

biomarkers. 

 

 

 

Supplemental Data 

 

Supplemental figure legend 

 

Supplementary figure 1. Validation of WT ageing - PLS model by permuting 

randomly the Age data respecting to the X data set. These re-estimations of the 

model evaluate the probability to get a good fit with random response data. R2 

parameter (green triangles) estimates how well the model fits the data and Q2 

parameter (blue squares) provides an estimate of how well the model predicts the Age 

data. Permutation of Age data reduces considerably Q2, being negative or non-

predictive for most of the re-estimated models. 
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