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Abstract

Background: It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad
spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure.

Results: I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues
and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA
methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the
following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with
cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to
chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types
exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a
high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA
methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of
chromatin states and tissue variance.

Conclusions: I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system.
This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging
research.
Background
An increasing body of evidence suggests that many manifes-
tations of aging are epigenetic [1,2]. This article focuses on
one particular type of epigenetic control: cytosine-5 methy-
lation within CpG dinucleotides (also known as DNA
methylation). Age-related DNA hypomethylation has long
been observed in a variety of species, including salmon [3],
rats [4], and mice [5]. More recent studies have shown that
many CpGs are subject to age-related hypermethylation. A
vast literature characterizes genes or genomic regions that
either get hypermethylated or hypomethylated with age
[6-14]. Previous studies have shown that age-related
hypermethylation occurs preferentially at CpG islands [8], at
bivalent chromatin domain promoters that are associated
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with key developmental genes [15], and at Polycomb-group
protein targets [10]. The epigenomic landscape varies mark-
edly across tissue types [16-18] and many age-related
changes depend on tissue type [8,19]. But several recent
studies have shown that age-dependent CpG signatures can
be defined independently of sex, tissue type, disease state
and array platform [10,13-15,20-22]. While several recent ar-
ticles describe age predictors based on DNAm levels in spe-
cific tissues (for example, saliva or blood [23,24]), it is not
yet known whether age can be predicted irrespective of tis-
sue type using a single predictor. Here I use an unprece-
dented collection of publicly available DNA methylation
data sets for defining and evaluating an age predictor. Its as-
tonishing accuracy across most tissues and cell types justifies
its designation as a multi-tissue age predictor. Its age predic-
tion, referred to as DNAm age, can be used as a biomarker
for addressing a host of questions arising in aging research
and related fields. For example, I show that premature aging
diseases (such as progeria) do not resemble healthy normal
aging according to DNAm age and that interventions used
for creating induced pluripotent stem (iPS) cells reset the
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epigenetic clock to zero. I also describe what can be learnt
from applying DNAm age to cancer tissues and cancer cell
lines.

Results and discussion
Description of the (non-cancer) DNA methylation data sets
I assembled a large DNA methylation data set by combin-
ing publicly available individual data sets measured on the
Illumina 27K or Illumina 450K array platform. In total, I
analyzed n = 7,844 non-cancer samples from 82 individual
data sets (Additional file 1), which assess DNA methyla-
tion levels in 51 different tissues and cell types. Although
many data sets were collected for studying certain diseases
(Additional file 2), they largely involved healthy tissues. In
particular, cancer tissues were excluded from this first
large data set since it is well known that cancer has a pro-
found effect on DNA methylation levels [6,7,24-26]. The
Cancer Genome Atlas (TCGA) data sets mentioned in
Additional file 1 involved normal adjacent tissue from can-
cer patients. Details on the individual data sets and data
pre-processing steps are provided in Materials and
methods and Additional file 2. As described in Additional
file 1, the first 39 data sets were used to construct (‘train’)
the age predictor. Data sets 40 to 71 were used to test (val-
idate) the age predictor. Data sets 72 to 82 served other
purposes - for example, to estimate the DNAm age of em-
bryonic stem and iPS cells. The criteria used for selecting
the training sets are described in Additional file 2. Briefly,
the training data were chosen i) to represent a wide
spectrum of tissues/cell types, ii) to involve samples whose
mean age (43 years) is similar to that in the test data, and
iii) to involve a high proportion of samples (37%) mea-
sured on the Illumina 450K platform since many on-going
studies use this recent Illumina platform. Here I only stud-
ied 21,369 CpGs (measured with the Infinium type II
assay) that were present on both Illumina platforms
(Infinium 450K and 27K) and had fewer than 10 missing
values across the data sets. Several important limitations
of this study are discussed in Additional file 2.

The multi-tissue age predictor used for defining DNAm age
To ensure an unbiased validation in the test data, I only
used the training data to define the age predictor. As de-
tailed in Materials and methods and Additional file 2, a
transformed version of chronological age was regressed
on the CpGs using a penalized regression model (elastic
net). The elastic net regression model automatically se-
lected 353 CpGs (Additional file 3). I refer to the 353
CpGs as (epigenetic) clock CpGs since their weighted
average (formed by the regression coefficients) amounts
to an epigenetic clock. Before characterizing them, I will
show that the resulting age predictor performs remark-
ably well across a wide spectrum of tissues and cell
types.
Predictive accuracy across different tissues
I considered several measures of predictive accuracy
since each measure has distinct advantages. The first, re-
ferred to as ‘age correlation’, is the Pearson correlation
coefficient between DNAm age (predicted age) and
chronological age. It has the following limitations: it can-
not be used for studying whether DNAm is well cali-
brated, it cannot be calculated in data sets whose
subjects have the same chronological age (for example,
cord blood samples from newborns), and it strongly de-
pends on the standard deviation of age (as described
below). The second accuracy measure, referred to as
(median) ‘error’, is the median absolute difference be-
tween DNAm age and chronological age. Thus, a test set
error of 3.6 years indicates that DNAm age differs by less
than 3.6 years in 50% of subjects. The error is well suited
for studying whether DNAm age is poorly calibrated.
‘Average age acceleration’, defined by the average difference
between DNAm age and chronological age, can be used to
determine whether the DNAm age of a given tissue is con-
sistently higher (or lower) than expected.
According to these three accuracy measures, the multi-

tissue age predictor performs remarkably well in most tis-
sues and cell types. Although its high accuracy in the train-
ing data (age correlation 0.97, error = 2.9 years; Figure 1) is
probably overly optimistic, its performance assessment (age
correlation = 0.96, error = 3.6 years; Figure 2) in the test
data is unbiased. Note that the age predictor performs well
in heterogeneous tissues (for example, whole blood, periph-
eral blood mononuclear cells, cerebellar samples, occipital
cortex, buccal epithelium, colon, adipose, liver, lung, saliva,
uterine cervix) as well as in individual cell types such as
CD4 T cells and CD14 monocytes (Figure 2C) and immor-
talized B cells (Figure 2T).
The age predictor is particularly accurate in data sets

composed of adolescents and children - for example,
blood (Figures 1B and 2B; Additional file 4P,S), brain data
(Figures 1F and 2F,G), and buccal epithelium (Figure 2I).

The DNAm age of blood and brain cells
A detailed analysis of blood tissue can be found in Add-
itional file 4. Human blood cells have different life spans:
while CD14+ monocytes (myeloid lineage) only live sev-
eral weeks, CD4+ T cells (lymphoid lineage) represent a
variety of cell types that can live from months to years.
An interesting question is whether blood cell types have
different DNAm ages. DNAm age does not vary signifi-
cantly across sorted blood cells from healthy male sub-
jects (Additional file 4T). These results combined with
the fact that the age predictor works well in individual
cell types (Figure 2C; Additional file 4) strongly suggest
that DNAm age does not reflect changes in cell type com-
position but rather intrinsic changes in the methylome.
While I expect significant correlations between DNAm



Figure 1 Chronological age (y-axis) versus DNAm age (x-axis) in the training data. Each point corresponds to a DNA methylation sample
(human subject). Points are colored and labeled according to the underlying data set as described in Additional file 1. (A) Across all training data,
the correlation between DNAm age (x-axis) and chronological age (y-axis) is 0.97 and the error (median absolute difference) is 2.9 years. Results
for (B) peripheral blood mononuclear cells (cor = 0.97, error <1 year), (C) whole blood (cor = 0.98, error = 2.7 years), (D) cerebellum (cor = 0.92,
error = 4.5), (E) pons (cor = 0.96, error = 3.3), (F) pre-frontal cortex (cor = 0.98, 1.4), (G) temporal cortex (cor = 0.99, error = 2.2), (H) brain samples,
composed of 58 glial cell, 58 neuron cell, 20 bulk, and 9 mixed samples (cor = 0.94, error = 3.1), (I) normal breast tissue (cor = 0.73, error = 8.9),
(J) buccal cells (cor = 0.95, error <1 year), (K) cartilage (cor = 0.79, error = 4), (L) colon (cor = 0.98, error = 3.7), (M) dermal fibroblasts (cor = 0.92,
error = 12), (N) epidermis (cor = 0.96, error = 3.1), (O) gastric tissue (cor = 0.83, error = 5.3), (P) normal adjacent tissue from head/neck cancers
(cor = 0.73, error = 5.8), (Q) heart (cor = 0.82, error = 9.2), (R) kidney (cor = 0.88, error = 3.8), (S) liver (cor = 0.90, error = 4.5), (T) lung (cor = 0.80,
error = 3.1), (U) mesenchymal stromal cells (cor = 0.95, error = 5.2), (V) prostate (cor = 0.55, error = 4.2), (W) saliva (cor = 0.89, error = 2.9), (X)
stomach (cor = 0.84, error = 3.7), (Y) thyroid (cor = 0.96, error = 4.1).
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age and abundance measures of some blood cell types (that
are known to change with age), these correlations do not
reflect a direct causal effect of cell type abundance on
DNAm age but rather a confounding effect due to chrono-
logical age. This conclusion is also corroborated by the find-
ing that DNAm age is highly related to chronological age in
other types of cells - for example, glial cells and neurons
(Figure 1H) and various brain regions (Additional file 5).

DNAm age and progeria
DNAm age can be used to study whether cells from pa-
tients with accelerated aging diseases such as progeria (in-
cluding Werner progeroid syndrome, Hutchinson-Gilford
progeria) truly look old at an epigenetic level. I find that
progeria disease status is not related to DNAm-based age
acceleration in Epstein-Barr virus-transformed B cells
(Figure 2T).

Tissues where DNAm age is poorly calibrated
DNAm age is poorly calibrated (that is, leads to a high
error) in breast tissue (Figure 2H), uterine endometrium
(Figure 2S), dermal fibroblasts (Figure 1M), skeletal
muscle tissue (Figure 2P), and heart tissue (Figures 1Q
and 2L). I can only speculate on the biological reasons
that could explain the poor calibration. The high error in
breast tissue (Additional file 6) may reflect hormonal ef-
fects or cancer field effects in this normal adjacent tissue
from cancer samples. Note that the lowest error (8.9 years)
in breast tissue is observed in normal breast tissue, that is,
in samples from women without cancer (training data set
14; Additional file 6). The menstrual cycle and concomitant
increases in cell proliferation may explain the high error in
uterine endometrium. Myosatellite cells may effectively re-
juvenate the DNAm age of skeletal muscle tissue. Similarly,
the recruitment of stem cells into cardiomyocytes for new
cardiac muscle formation could explain why human heart
tissue tends to have a low DNAm age. Carefully designed
studies will be needed to test these hypotheses.

The age correlation in a data set is determined by the
standard deviation of age
In the following, I describe non-biological reasons that
affect the accuracy (age correlation) of the age predictor.
To address how well the age predictor works in individual
data sets, I used two different approaches. First, I applied
the age predictor to individual data sets (see columns ‘Cor



Figure 2 Chronological age (y-axis) versus DNAm age (x-axis) in the test data. (A) Across all test data, the age correlation is 0.96 and the
error is 3.6 years. Results for (B) CD4 T cells measured at birth (age zero) and at age 1 (cor = 0.78, error = 0.27 years), (C) CD4 T cells and CD14
monocytes (cor = 0.90, error = 3.7), (D) peripheral blood mononuclear cells (cor = 0.96, error = 1.9), (E) whole blood (cor = 0.95, error = 3.7), (F)
cerebellar samples (cor = 0.92, error = 5.9), (G) occipital cortex (cor = 0.98, error = 1.5), (H) normal adjacent breast tissue (cor = 0.87, error = 13),
(I) buccal epithelium (cor = 0.83, error = 0.37), (J) colon (cor = 0.85, error = 5.6), (K) fat adipose (cor = 0.65, error = 2.7), (L) heart (cor = 0.77,
error = 12), (M) kidney (cor = 0.86, error = 4.6), (N) liver (cor = 0.89, error = 6.7), (O) lung (cor = 0.87, error = 5.2), (P)muscle (cor = 0.70, error = 18), (Q)
saliva (cor = 0.83, error = 2.7), (R) uterine cervix (cor = 0.75, error = 6.2), (S) uterine endometrium (cor = 0.55, 11), (T) various blood samples composed
of 10 Epstein Barr Virus transformed B cell, three naive B cell, and three peripheral blood mononuclear cell samples (cor = 0.46, error = 4.4). Samples are
colored by disease status: brown for Werner progeroid syndrome, blue for Hutchinson-Gilford progeria, and turquoise for healthy control subjects.
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(Age, DNAmAge)’ and ‘Median Error(Age, DNAmAge)’ in
Additional file 1). An obvious limitation of this approach
is that it leads to biased results in the training data sets.
The second approach, referred to as leave-one-data-

set-out cross-validation (LOOCV) analysis, leads to un-
biased estimates of the predictive accuracy for each data
set. As suggested by its name, this approach estimates
the DNAm age for each data set (considered as test data
set) separately by fitting a separate multi-tissue age pre-
dictor to the remaining (left out) data sets. The resulting
unbiased estimates of predictive accuracy can be found
in Additional file 1: columns ‘Cor LOOCV’ and ‘Error
LOOCV’, respectively.
Data sets differ greatly with respect to the median

chronological age and the standard deviation, which is
defined as the square root of the variance of age. Some
data sets only involve samples with the same age (stand-
ard deviation = 0) while others involve both young and
old subjects (Additional file 1). As expected, the stand-
ard deviation is significantly correlated (r = 0.49, P = 4E-
5; Figure 3A) with the corresponding LOOCV estimate
of the age correlation. In contrast, the sample size of the
data set has no significant relationship with the age cor-
relation (Figure 3B).
A host of technical artifacts could explain differences
in predictive accuracy: for example, variations in sample
processing, DNA extraction, DNA storage effects, batch
effects, and chip effects.

DNAm age of multiple tissues from the same subject
In the following, I will address whether solid tissues can
be found whose DNAm age differs substantially from
chronological age. As a first step, I compared the mean
DNAm age per tissue with the corresponding mean
chronological age. As expected, mean DNAm age per
tissue is highly correlated (cor = 0.99; Figure 3C) with
mean chronological age. But breast tissue shows evi-
dence of significant age acceleration. The results of
Figure 3C should be interpreted with caution because
the analysis included training data sets and involved
tissue samples from different subjects.
A more interesting analysis is to compare the DNAm

ages of tissues collected from the same subjects. DNAm
age does not change significantly across different brain
regions (temporal cortex, pons, frontal cortex, cerebel-
lum) from the same subjects (Additional file 5K,L). I
could only find three human subjects from whom many
tissues had been profiled (Figure 3E-G). Although the



Figure 3 Factors affecting the relation between age and DNAm age. (A-C) Factors influencing prediction accuracy in the training and test
sets. (A) The standard deviation of age (x-axis) has a strong relationship (cor = 0.49, P = 4E-5) with age correlation (y-axis). To arrive at an
unbiased measure of prediction accuracy, I estimated the age correlation using a leave-one-data-set-out cross validation (LOOCV) analysis. Each
point is labeled and colored according to the underlying data set (Additional file 1). (B) Sample size (x-axis) is not significantly correlated with the
age correlation (y-axis). (C) Mean DNAm age per tissue (x-axis) versus mean chronological age (y-axis). Points correspond to the human tissue
data mentioned in Additional file 1. Breast tissue shows signs of accelerated aging. (D,E) The effect of tissue type on the age prediction in test
data set 71 even for tissues that were not part of the training data (for example, esophagus, jejunum, penis). (E) The horizontal bars report the
DNAm age (x-axis) of a single tissue from a single donor (H12817). Only one sample per tissue (grey axis numbers) was available. DNAm age has
a low coefficient of variation (0.12). The red vertical line corresponds to the true chronological age. (F-H) DNAm age for various tissues from data
set 77 but chronological age was not available. (F,G) A multi-tissue analysis of somatic adult tissue data from an adult male and an adult female,
respectively. (H) Neonatal tissues tend to have low DNAm age. (I,J) The DNAm age of sperm is significantly lower than the chronological age of
the respective sperm donors in data sets 74 and 75, respectively. Error bars represent one standard error.
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limited sample sizes per tissue (mostly one sample per
tissue per subject) did not allow for rigorous testing,
these data can be used to estimate the coefficient of vari-
ation of DNAm age (that is, the standard deviation di-
vided by the mean). Note that the coefficient of
variations for the first and second adult male are rela-
tively low (0.12 and 0.15 in Figure 3E,F) even though the
analysis involved several tissues that were not part of the
training data - for example, jejunum, penis, pancreas,
esophagus, spleen, pancreas, lymph node, diaphragm.
The coefficient of variation in the adult female
(Figure 3G) is relatively high (0.21), which reflects the
fact that her breast tissue shows signs of substantial age
acceleration (congruent with the previous results from
Figure 3C).
It remains to be seen how well DNAm age performs in

tissues and DNA sources that were not represented in
the training data set. Figure 3D,E suggest that it also per-
forms well in several other human tissues. As expected, I
did not find a significant age correlation in sperm. The
DNAm age of sperm is significantly lower than the
chronological age of the donor (Figure 3I, J).
DNAm age is applicable to chimpanzees
It is important to study whether there are inter-primate
differences when it comes to DNAm age. These studies
may not only help in identifying model organisms for reju-
venating interventions but might explain differences in
primate longevity. While future studies could account for
sequence differences, it is straightforward to apply the
DNAm age estimation algorithm to Illumina DNA methy-
lation data sets 72 [27] and 73 [28]. Strikingly, the DNAm
age of heart, liver, and kidney tissue from chimpanzees
(Pan troglodytes) is aligned with that of the corresponding
human tissues (Figure 4A,B). Further, the DNAm age of
blood samples from two extant hominid species of the
genus Pan (commonly referred to as chimpanzee) is highly
correlated with chronological age (Figure 4C). While
DNAm age is applicable to chimpanzees, its performance
appears to be diminished in gorillas (Figure 4F), which
may reflect the larger evolutionary distance.

DNAm age of induced pluripotent stem cells and stem cells
The billions of cells within an individual can be orga-
nized by genealogy into a single somatic cell tree that



Figure 4 Studying the conservation of DNAm age in tissues from great apes. Analysis of two independent data sets involving tissues from
great apes. (A,B) Results for data set 72 [27]. A high age correlation (cor = 0.84, error = 10 years) can be observed when studying both
chimpanzee heart (colored grey) and human heart tissue (colored turquoise) samples. To facilitate a comparison, I also added the heart tissue
data from data set 25 (blue circles). (B) DNAm age is closely related to chronological age (cor = 0.75, error = 3.7) across kidney and liver samples
from humans (turquoise) and chimpanzees (grey). (C-F) Results for ape blood samples from data set 73. (C) Highly accurate results (cor = 0.9,
error = 1.4) can be observed for blood samples from common chimpanzees (Pan troglodytes; labeled C, colored blue) and bonobos (Pan paniscus;
labeled B, colored turquoise). (D) Results for common chimpanzees only. (E) Results for bonobos only. (F) Results for gorillas.
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starts from the zygote and ends with differentiated cells.
Cells at the root of this tree should be young. This is in-
deed the case: embryonic stem cells have a DNAm age
close to zero in five different data sets (Figure 5). iPS cells
are a type of pluripotent stem cell artificially derived from
a non-pluripotent cell (typically an adult somatic cell) by
inducing a set of specific genes. Since iPS cells are similar
to embryonic stem (ES) cells, I hypothesized that the
DNAm age of iPS cells should be significantly younger
than that of corresponding primary cells. I confirm this
hypothesis in three independent data sets (Figures 5A-C).
No significant difference in DNAm age could be detected
between ES cells and iPS cells (Figure 5A,B).

Effect of cell passaging on DNAm age
Most cells lose their proliferation and differentiation poten-
tial after a limited number of cell divisions (Hayflick limit).
I hypothesized that cell passaging (also known as splitting
cells) increases DNAm age. I confirmed this hypothesis in
three independent data sets (data sets 77, 78, and 79) as
shown in Figure 5F-J. A significant correlation between cell
passage number and DNAm age can also be observed
when restricting the analysis to iPS cells (Figure 5G) or
when restricting the analysis to ES cells (Figure 5H,J).

Comparing the multi-tissue predictor with other age predictors
As shown in Additional file 2, the proposed multi-tissue
predictor of age outperforms predictors described in other
articles [21,23]. While further gains in accuracy can per-
haps be achieved by focusing on a single tissue and con-
sidering more CpGs, the major strength of the proposed
multi-tissue age predictor lies in its wide applicability: for
most tissues it will not require any adjustments or offsets.
I briefly mention that a ‘shrunken’ version of the multi-
tissue predictor (Additional files 2 and 3), based on 110
CpGs (selected from the 353 clock CpGs) is highly accur-
ate in the training data (cor = 0.95, error = 4 years) and
test data (cor = 0.95, error = 4.2 years).

What is known about the 353 clock CpGs?
An Ingenuity Pathway analysis of the genes that co-locate
with the 353 clock CpGs shows significant enrichment for



Figure 5 Induced pluripotent stem cells, embryonic stem cells and cell passaging. (A-C) Induced pluripotent stem (iPS) cells have a lower
DNAm age than corresponding primary cells in (A) data set 77 (Kruskal Wallis P-value 1E-14), (B) data set 78 (P = 8E-10), and (C) data set 79
(P = 0.0062). (A,B) There is no significant difference in DNAm age between ES cells and iPS cells (both restricted to cell passage numbers less
than 15) in data sets 77 and 78, respectively. (D,E) DNAm age of human ES cell lines and adult tissues in data sets 80 and 81, respectively. (F-J)
Cell passage number (y-axis) is significantly correlated with DNAm age (x-axis). (F) Cell passage number (y-axis) versus DNAm age in data set 77.
Points are colored by cell type (black for ES cells, red for iPS cells, blue for somatic cells). (G,H) Analogous results for iPS cells (cor = 0.33,
P = 0.025) and embryonic stem cells (cor = 0.28, P = 0.0023) from data set 77. (I,J) Validation of these findings in two independent data sets,
78 and 79, respectively. Panel (J) involves only stem cells. Panels (A-C) involve cells that had undergone fewer than 15 cell passages. Panels (C,J)
are restricted to cells that were not irradiated. The bar plots show the mean value ±1 standard error.
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cell death/survival, cellular growth/proliferation, organis-
mal/tissue development, and cancer (Additional file 7).
The 353 clock CpGs can be divided into two sets

according to their correlation with age. The 193 positively
and 160 negatively correlated CpGs get hypermethylated
and hypomethylated with age, respectively. Using DNA
methylation data measured across many different adult
and fetal tissues, I study the relationship between tissue
variance and age effects (Additional file 8). While the
DNA methylation levels of the 193 positively related CpGs
vary less across different tissues, those of the 160 nega-
tively related CpGs vary more across tissues than the
remaining CpGs on the Illumina 27K array. To estimate
‘pure’ age effects, I used a meta analysis method that im-
plicitly conditions on data set, that is, it removes the
confounding effects due to data set and tissue type. The
clock CpGs include those with the most significant meta
analysis P-value for age irrespective of whether the meta
analysis P-value was calculated using only training data
sets or all data sets (Additional file 8E). While positively
related markers do not show a significant relationship with
CpG island status (Additional file 9F), negatively related
markers tend to be over-represented in CpG shores (P =
9.3E-6; Additional file 9K).
Significant differences between positive and negative

markers exist when it comes to Polycomb-group protein
binding: positively related CpGs are over-represented
near Polycomb-group target genes (reflecting results
from [10,14]) while negative CpGs show no significant
relationship (Additional file 9H-J,M-O).

Chromatin state analysis
Chromatin state profiling has emerged as a powerful
means of genome annotation and detection of regulatory
activity. It provides a systematic means of detecting cis-
regulatory elements (given the central role of chromatin
in mediating regulatory signals and controlling DNA ac-
cess) and can be used for characterizing non-coding por-
tions of the genome, which contribute to cellular
phenotypes [29]. While individual histone modifications
are associated with regulator binding, transcriptional ini-
tiation, enhancer activity, combinations of chromatin
modifications can provide even more precise insight into
chromatin state [29]. Ernst et al. [29] distinguish six
broad classes of chromatin states, referred to as pro-
moter, enhancer, insulator, transcribed, repressed, and
inactive states. Within them, active, weak and poised
promoters (states 1 to 3) differ in expression levels,
while strong and weak enhancers (states 4 to 7) differ in
expression of proximal genes. The 193 positively related
CpGs are more likely to be in poised promoters (chro-
matin state 3 regions; Additional file 9B) while the 160
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negatively related CpGs are more likely to be in either
weak promoters (chromatin state 2; Additional file 9D) or
strong enhancers (chromatin state 4; Additional file 9E).

Age acceleration is highly heritable
Several authors have found that DNA methylation levels
are under genetic control [24,26,30-32]. Since many age-
related diseases are heritable, it is interesting to study
whether age acceleration (here defined as difference be-
tween DNAm age and chronological age) is heritable as
well. I estimated the broad sense heritability of age ac-
celeration using Falconer’s formula, H2 = 2(cor(MZ)-cor
(DZ)), in two twin data sets that included both monozy-
gotic (MZ) and dizygotic (DZ) twins.
As detailed in Additional file 10, the broad sense herit-

ability of age acceleration is 100% in newborns (data set 50)
and 39% in older subjects (data set 41), which suggests that
non-genetic factors become more relevant later in life.

Aging effects on gene expression (messenger RNA) levels
Since DNA methylation is an important epigenetic mech-
anism for regulating gene expression levels (messenger
RNA abundance), it is natural to wonder how age-related
DNAm changes relate to those observed in gene expres-
sion levels. As described in Additional file 11, I find very
little overlap. Further, I do not find that age effects on
DNAm levels affect genes known to be differentially
expressed between naive CD8 T cells and CD8 memory
cells (Additional file 11). These non-significant results re-
flect the fact that the relationship between DNAm levels
and expression levels is complex [33,34].

Age effects on individual CpGs
For each CpG, I report the median DNAm level in sub-
jects aged younger than 35 years and in subjects older
than 55 years (Additional file 3). The age-related change
in beta values is typically small (the average absolute dif-
ference across the 353 CpGs is only 0.032). The weak
age effect on individual clock CpGs can also be observed
in the heat map that visualizes how the DNAm levels
change across subjects (Figure 6A). The few vertical
bands in the heat map suggest that the clock CpGs are
relatively robust against tissue and data set effects.

The changing ticking rate of the epigenetic clock
The linear combination of the 353 clock CpGs (resulting
from the regression coefficients) varies greatly across
ages as can be seen from Figure 6B,C. The red calibra-
tion curve (formula in Additional file 2) reveals a loga-
rithmic dependence until adulthood that slows to a
linear dependence later in life (Figure 6B). I interpret the
rate of change (of this red curve) as the ticking rate of
the epigenetic clock. Using this terminology, I find that
organismal growth (and concomitant cell division) leads
to a high ticking rate that slows down to a constant tick-
ing rate (linear dependence) after adulthood.

DNAm age does not measure mitotic age or cellular
senescence
Since epigenetic somatic errors in somatic replications
appear to be readily detected as age-related changes in
methylation [35,36], it is a plausible hypothesis that
DNAm age measures the number of somatic cell replica-
tions. In other words, that it measures mitotic age
(which assigns a cell copy number to every cell) [35,37].
While DNAm age is correlated with cell passage number
(Figure 5) and the clock ticking rate is highest during or-
ganismal growth (Figure 6B,C), it is clearly different
from mitotic age since it tracks chronological age in
non-proliferative tissue (for example, brain tissue) and
assigns similar ages to both short and long lived blood
cells (Additional file 4T).
Another plausible hypothesis is that DNAm age is a

marker of cellular senescence. This turns out to be
wrong as can be seen from the fact that DNAm age is
highly related to chronological age in immortal, non-
senescent cells - for example, immortalized B cells
(Figure 2T). Further, DNAm age and cell passage num-
ber are highly correlated in ES cells (Figure 5H,J), which
are also immortal [38].

Model: DNAm age measures the work done by an
epigenetic maintenance system
I propose that DNAm age measures the cumulative work
done by a particular kind of epigenetic maintenance sys-
tem (EMS), which helps maintain epigenetic stability.
While epigenetic stability is related to genomic stability, I
find it useful to distinguish these two concepts. If the EMS
model of DNAm age is correct, then this particular kind
of EMS appears to be inactive in the perfectly young ES
cells. Maintenance methyltransferases are likely to play an
important role. In physics, ‘work’ is defined by the integral
of power over time. Using this terminology, I hypothesize
that the power (defined as rate of change of the energy
spent by this EMS) corresponds to the tick rate of the epi-
genetic clock. This model would explain the high tick rate
during organismal development since a high power is re-
quired to maintain epigenetic stability during this stressful
time. At the end of development, a constant amount of
power is sufficient to maintain stability leading to a con-
stant tick rate.
If this EMS model of DNAm age is correct, then DNAm

age should be accelerated by many perturbations that
affect epigenetic stability. Further, age acceleration should
have some beneficial effects given the protective role of
the EMS. In particular, the EMS model of DNAm age en-
tails the following testable predictions. First, cancer tissue
should show signs of accelerated age, reflecting the



Figure 6 Heat map of DNA methylation levels of the 353 CpGs across all samples. (A) The heat map color-codes DNAm levels: blue and
red for beta values close to zero and one, respectively. Note that DNA methylation levels only change very gradually with age. The 353 clock
CpGs (rows) are sorted according to their age correlation. The first row color band, denoted ‘corAge’, color-codes whether a CpG has a negative
(blue) or positive (red) correlation with age. ‘CpG’ indicates whether a CpG is located in a CpG island (turquoise), shore (brown), or outside of CpG
islands. ‘PolyGr’: blue for CpGs near a Polycomb group target gene. ‘Chr’ color-codes chromosomes. The DNA methylation samples (columns) for
which chronological age was available are sorted according to age, tissue, and data set. The column color bands visualize properties of the
samples. ‘Age’: white for age zero and dark brown for the maximum observed age of 101 years. ‘Training’: black for training set samples. ‘Tissue’
color codes tissue type. ‘Platform’: black for Illumina 450K. Note that few data sets have a pronounced effect on the clock CpGs. The largest
vertical band corresponds to the buccal epithelium samples from 15 year old subjects (data set 14, color-coded midnight blue in the column
band ‘Data’). (B) The weighted average of the 353 clock CpGs versus chronological age in the training data sets. The rate of change of the red
curve can be interpreted as tick rate. Points are colored and labeled by data set. (C) Analogous results for the test data sets.

Horvath Genome Biology , 14:R115 Page 9 of 19
http://genomebiology.com//14/10/R115



Horvath Genome Biology , 14:R115 Page 10 of 19
http://genomebiology.com//14/10/R115
protective actions of the EMS. Second, many mitogens,
genomic aberrations, and oncogenes, which trigger the re-
sponse of the EMS, should be associated with accelerated
DNAm age. Third, high age acceleration of cancer tissue
should be associated with fewer somatic mutations given
the protective role of the EMS. Fourth, mutations in TP53
should be associated with a lower age acceleration of can-
cer tissue if one further assumes that p53 signaling helps
trigger the EMS.
All of these model predictions turn out to be true as

will be shown in the following cancer applications.

DNAm age of cancer tissue versus tumor morphology
I assembled a large collection of cancer data sets com-
posed of n = 5,826 cancer samples from 32 individual
cancer data sets (Additional file 12). Details on the can-
cer data sets can be found in Additional file 2. While
some cancer tissues show relatively large correlations be-
tween DNAm age and patient age, the correlation be-
tween DNAm age and chronological age tends to be
weak (cor = 0.15, P = 1.9E-29; Additional file 13A). Each
cancer/affected tissue shows evidence of significant age
acceleration with an average age acceleration of 36.2
years (Additional file 13B). Tumor morphology (grade
and stage) has only a weak relationship with age acceler-
ation in most cancers: only 4 out of 33 hypothesis tests
led to a nominally (P < 0.05) significant result (Additional
file 14). Only the negative correlation between stage and
age acceleration in thyroid cancer remains significant
(uncorrected P = 8.7E-9; Additional file 14Z) after ap-
plying a Bonferroni correction.

Cancer tissues with high age acceleration exhibit fewer
somatic mutations
Strikingly, the number of mutations per cancer sample
tends to be inversely correlated with age acceleration
(Figure 7), which may reflect that DNAm age acceler-
ation results from processes that promote genome sta-
bility. Specifically, a significant negative relationship
between age acceleration and the number of somatic
mutations can be observed in the following seven af-
fected tissues/cancers: bone marrow (AML data from
TCGA), breast carcinoma (BRCA data), kidney renal cell
carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), ovarian cancer (OVAR), prostate (PRAD), and
thyroid (THCA). Similar results can also be observed in
several breast cancer types (Additional file 15).

TP53 mutations are associated with lower age acceleration
Additional file 16 presents the genes whose mutation
has the strongest effect on age acceleration. Strikingly,
TP53 was among the top 2 most significant genes in 4
out of the 13 cancer data sets. Further, TP53 mutation is
associated with significantly lower age acceleration in
five different cancer types (Additional file 17), including
AML (P = 0.0023), breast cancer (P = 1.4E-5 and P = 3.7E-
8), ovarian cancer (P = 0.03), and uterine corpus
endometrioid (P = 0.00093). Further, marginally significant
result can be observed in lung squamous cell carcinoma
(Additional file 17) and colorectal cancer (P = 0.073,
below). I could only find one cancer type (glioblastoma
multiforme (GBM)) where mutations in TP53 are associ-
ated with a nominally significant increased age acceleration
(P = 0.02; Figure 5H). Overall, these results suggest that
p53 signaling can trigger processes that accelerate DNAm
age, which supports the EMS model of DNAm age.

Somatic mutations in steroid receptors accelerate DNAm
age in breast cancer
In the following, I show that DNAm age changes across
different breast cancer types. Somatic mutations in steroid
receptors have a pronounced effect on DNAm age in
breast cancer samples: samples with a mutated estrogen
receptor (ER) or mutated progesterone receptor (PR) ex-
hibit a much higher age acceleration than ER- or PR- sam-
ples in four independent data sets (Figure 8). In contrast,
HER2/neu amplification has no significant relationship
with age acceleration. Age acceleration differs greatly
across different breast cancer types (Figure 4N): luminal A
tumors (typically ER+ or PR+, HER2-, low Ki67), show the
highest positive age acceleration. Luminal B tumors (typic-
ally ER+ or PR+, HER2+ or HER2- with high Ki67) show a
similar effect. The lowest age acceleration can be observed
for basal-like tumors (often triple negative ER-, PR-,
HER2-) and HER2 type tumors (typically HER2+, ER-, PR-).

Proto-oncogenes affect DNAm age in colorectal cancer
Colorectal cancer samples with a BRAF (V600E) mutation
are associated with an increased age acceleration (Figure 9A)
whereas samples with a K-RAS mutation have a decreased
age acceleration (Figure 9C). Echoing previous results, TP53
mutations appear to be associated with decreased age accel-
eration (marginally significant P = 0.073; Figure 9B). Pro-
moter hypermethylation of the mismatch repair gene MLH1
leads to the most significant increase in age acceleration
(P = 5.7E-5; Figure 9D), which supports the EMS model of
DNAm age. The CpG island methylator phenotype, defined
by exceptionally high cancer-specific DNA hypermethylation
[39], is also significantly (P = 3.5E-5; Figure 9F) associated
with age acceleration, which may reflect its association with
MLH1 hypermethylation and BRAF mutations.

DNAm age in glioblastoma multiforme
In general, the CpG island methylator phenotype and
age acceleration measure different properties as can be
seen in GBM (Figure 9M).
Interestingly, age acceleration in GBM samples is

highly significantly (P = 3.3E-7; Figure 9J) associated



Figure 7 Age acceleration versus number of somatic mutations in the TCGA data. Mutation data from TCGA were used to count the
number of mutations per cancer sample. (A) Age acceleration versus (log transformed) mutation count per sample across all cancers. Note that
this analysis is confounded by cancer/tissue type. (B-P) A significant negative relationship between age acceleration and number of somatic
mutations can be observed in the following seven affected tissues/cancers: (C) bone marrow (AML), (D) breast carcinoma (BRCA), (G) kidney
(KIRC), (H) kidney (KIRP), (K) ovarian cancer (OVAR), (L) prostate (PRAD), and (O) thyroid (THCA). No significant relationship could be found in the
following six cancer types: (F) colon carcinoma (COAD), (I) lung adenocarcinoma (LUAD), (J) lung squamous cell carcinoma (LUSC), (P) uterine
endometrioid, (M) rectal cancer (READ), (N) skin. Due to the low sample size, the results are inconclusive for (B) bladder cancer and (E) cervical
cancer. Each point corresponds to a DNA methylation sample (cancer sample from a human subject) analogous to Additional file 12. The x-axis
reports the log transformed (base 10) number of mutations observed per sample. The figure titles report the biweight midcorrelation, which is a
robust measure of correlation.
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with certain mutations in H3F3A, which encodes the
replication-independent histone variant H3.3. These mu-
tations are single-nucleotide variants changing lysine 27
to methionine (K27M) or changing glycine 34 to argin-
ine (G34R) [40]. The fact that GBMs with a G34R muta-
tion in H3F3A have a much higher age acceleration than
those with a K27M mutation (Figure 9J,L) makes sense
since each H3F3A mutation defines an epigenetic sub-
group of GBM with a distinct global methylation pattern
and acts through a different set of genes [40]. Lysine 27
is a critical residue of histone 3 variants, and methyla-
tion at this position (H3K27me), which may be mim-
icked by the terminal CH3 of methionine substituted at
this residue [40], is commonly associated with transcrip-
tional repression [41] while H3K36 methylation or
acetylation typically promotes gene transcription [42].
G34-mutant cells exhibit increased RNA polymerase II
binding, and increased gene expression, most notably
that of the oncogene MYCN [43]. Both H3F3A muta-
tions are mutually exclusive with IDH1 mutations, which
characterize a third mutation-defined subgroup [44].
Age acceleration in GBM samples is also associated with
the following genomic aberrations: TP53 mutation, ATRX
mutation, chromosome 7 gain, chromosome 10 loss,
CDKN2A deletion, and EGFR amplification (Figure 9G-I).
Reflecting these results for individual markers, age acceler-
ation varies significantly (P = 2E-7; Figure 9L) across the
GBM subtypes defined in [44].

Acute myeloid leukemia
Mutations in IDH1 (similar to the case of GBM), FLT,
RAS, NPMc, and various well characterized transloca-
tions do not seem to relate to age acceleration in AML
samples (Figure 9S-W).

DNAm age of cancer cell lines
Using seven publicly available cell line data sets (Additional
files 12 and 13), I was able to estimate the DNAm age
of 59 different cancer cell lines (from bladder, breast,
gliomas, head/neck, leukemia, and osteosarcoma). Across
all cell lines, DNAm age does not have a significant cor-
relation with the chronological age of the patient from
whom the cancer cell line was derived (Additional file 18B).
However, a marginally significant age correlation can be



Figure 8 Age acceleration in breast cancer. Panels in the first column (A,E,I,M) show that estrogen receptor (ER)-positive breast cancer
samples have increased age acceleration in four independent data sets. Panels in the second column (B,F,J) show the same result for
progesterone receptor (PR)-positive cancers. Panels in the third column (C,G,K) show that HER2/neu amplification is not associated with age
acceleration. Panels in the fourth column (D,H,L) show how combinations of these genomic aberrations affect age acceleration. (N) Age
acceleration across the following breast cancer types: Basal-like, HER2-type, luminal A, luminal B, and healthy (normal) breast tissue. (O) Ki-67
expression versus age acceleration. (P) Tumor grade is not significantly related to age accelerations, reflecting results from Additional file 14.
Vertical grey numbers on the x-axis report sample sizes. The figure titles report the data source (GSE identifier from Gene Expression Omnibus or
TCGA), and the Kruskal Wallis test P-value (except for panels (O,P), which report correlation test P-values). Error bars represent 1 standard error.
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observed across osteosarcoma cell lines (cor = 0.41, P =
0.08; Additional file 18C). Overall, DNAm age acceleration
varies greatly across the cancer lines lines (Additional files
18A and 19): the highest values can be observed for AML
cell lines (KG1A, 182 years; HL-60, 177 years); the lowest
values for head/neck squamous cell carcinoma cell line
(UPCI SCC47, 6 years) and two breast cancer cell lines
(SK-BR-3, 8 years; MDA-MB-468, 11 years). It will be in-
teresting to test whether DNAm age relates to other char-
acteristics of cancer cell lines.

Conclusions
Through the generosity of hundreds of researchers, I
was able to analyze an unprecedented collection of DNA
methylation data from healthy tissues, cancer tissues,
and cancer cell lines. The healthy tissue data allowed me
to develop a multi-tissue predictor of age (mathematical
details are provided in Additional file 2). An R software
tutorial can be found in Additional file 20 (which re-
quires Additional files 21, 22, 23, 24, 25, 26 and 27 as in-
put). The basic approach is to form a weighted average
of the 353 clock CpGs, which is then transformed to
DNAm age using a calibration function. The calibration
function reveals that the epigenetic clock has a high tick
rate until adulthood, after which it slows to a constant
tick rate.
I propose that DNAm age measures the cumulative

work done by an epigenetic maintenance system. This
EMS model of DNAm age leads to several testable model
predictions that I validate using cancer data. But irrespect-
ive of the validity of the EMS model, the findings in cancer
are interesting in their own right. While all cancer tissues
exhibit signs of severe age acceleration, this is not neces-
sarily the case for individual cancer cell lines. Overall, high
age acceleration is associated with fewer somatic muta-
tions in cancer tissue. Mutations in TP53 are associated
with lower DNAm age. To provide a glimpse of how
DNAm age can inform cancer research, I relate it to sev-
eral widely used genomic aberrations in breast cancer,
colorectal cancer, GBM, and AML.
DNAm age is arguably a promising marker for studying

human development, aging, and cancer. It may become a
useful surrogate marker for evaluating rejuvenation ther-
apies. The most salient feature of DNAm age is its applic-
ability to a broad spectrum of tissues and cell types. Since
it allows one to contrast the ages of different tissues from
the same subject, it can be used to identify tissues that
show evidence of accelerated age due to disease (for



Figure 9 Age acceleration in colorectal cancer, glioblastoma multiforme and acute myeloid leukemia. (A-F) Results for colorectal cancer.
Mean age acceleration (y-axis) in colorectal cancer versus mutation status (denoted by a plus sign) in (A) BRAF, (B) TP53, (C) K-RAS. (D) Promoter
hyper methylation of the mismatch repair gene MLH1 (denoted by a plus sign) is significantly (P = 5.7E-5) associated with age acceleration. (E)
Mean age acceleration across different patient groups defined by combinations of BRAF, TP53, K-RAS, MLH1 status. The first bar reports the age
acceleration in normal adjacent colorectal tissue from cancer patients but the sample size of 4 is rather low. (F) CpG island methylator phenotype
is associated with age acceleration (P = 3.5E-5). (G-R) Results for various genomic abnormalities in glioblastoma multiforme. (J) A highly
significant (P = 3.3E-7) relationship can be found between H3F3A mutations and age acceleration. Samples with a G34R mutation have the
highest age acceleration. (S-W) Results for various genomic aberrations in acute myeloid leukemia. (X) Thyroid cancer age acceleration versus
RAS family mutation status is inconclusive since mutation status was largely unknown. Error bars represent 1 standard error.
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example, cancer). It remains to be seen whether the
DNAm age of easily accessible fluids/tissues (for example,
saliva, buccal cells, blood, skin) can serve as a surrogate
marker for inaccessible tissues (for example, brain, kidney,
liver). It is noteworthy that DNAm age is applicable to
chimpanzee tissues. Given the high heritability of age ac-
celeration in young subjects, I expect that age acceleration
will mainly be a relevant measure in older subjects. Using a
relatively small data set, I did not find any evidence that a
premature aging disease (progeria) is associated with accel-
erated DNAm age (Figure 2T). In Additional file 2, I dis-
cuss whether DNAm age fulfils the biomarker criteria
developed by the American Federation for Aging Research.
Future research will need to clarify whether DNAm age

is only a marker of aging or relates to an effector of aging.
In conclusion, the epigenetic clock described here is likely
to become a valuable addition to the telomere clock.

Materials and methods
Definition of DNAm age using a penalized regression model
Using the training data sets, I used a penalized regres-
sion model (implemented in the R package glmnet [45])
to regress a calibrated version of chronological age on
21,369 CpG probes that a) were present both on the
Illumina 450K and 27K platform and b) had fewer than
10 missing values. The alpha parameter of glmnet was
chosen to 0.5 (elastic net regression) and the lambda
value was chosen using cross-validation on the training
data (lambda = 0.0226). DNAm age was defined as
predicted age. Mathematical details are provided in
Additional file 2.

Short description of the healthy tissue data sets
All data are publicly available (Additional file 1). Many
data sets involve normal adjacent tissue from TCGA.
Details on the individual data sets can be found in Add-
itional file 2. To give credit to the many researchers who
generated the data, I briefly mention relevant citations.
Data sets 1 and 2 (whole blood samples from a Dutch
population) were generated by Roel Ophoff and col-
leagues [14]. Data set 3 (whole blood) consists of whole
blood samples from a recent large scale study of healthy
individuals [24]. The authors used these and other data
to estimate human aging rates and developed a highly
accurate predictor of age based on blood data. Data set
4 consists of leukocyte samples from healthy male chil-
dren from Children’s Hospital Boston [46]. Data set 5
consists of peripheral blood leukocyte samples [47]. Data
set 6 consists of cord blood samples from newborns
[30]. Data set 7 consists of cerebellum samples, which
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were provided by C Liu and C Chen (Gene Expression
Omnibus (GEO) identifier GSE38873). Data sets 8, 9, 10,
and 13 consist of cerebellum, frontal cortex, pons, and
temporal cortex samples, respectively, obtained from the
same subjects [48]. Data set 11 consists of prefrontal
cortex samples from healthy controls [22]. Data set 12
consists of neuron and glial cell samples from [49]. Data
set 14 consists of normal breast tissue samples [50]. Data
set 15 consists of buccal cells from 109 15-year-old ado-
lescents from a longitudinal study of child development
[51]. Data set 16 consists of buccal cells from eight dif-
ferent subjects [15]. Data set 17 consists of buccal cells
from monozygotic (MZ) and dizygotic (DZ) twin pairs
from the Peri/postnatal Epigenetic Twins Study (PETS)
cohort [52]. Data set 18 consists of cartilage (chondro-
cyte) samples from [53]. Data set 19 normal consists of
adjacent colon tissue from TCGA. Data set 20 consists
of colon mucosa samples from [54]. Data set 21 consists
of dermal fibroblast samples from [21]. Data set 22 con-
sists of epidermis samples from [55]. Data set 23 consists
of gastric tissue samples from [56]. Data set 24 consists
of head/neck normal adjacent tissue samples from
TCGA (HNSC data). Data set 25 consists of heart tissue
samples from [57]. Data set 26 consists of normal adja-
cent renal papillary tissue from TCGA (KIRP data). Data
sets 27 consists of normal adjacent tissue from TCGA
(KIRC data). Data set 28 consists of normal adjacent
liver samples from [58]. Data set 29 consists of normal
adjacent lung tissue from TCGA (LUSC data). Data set
30 consists of normal adjacent lung tissue samples from
TCGA (LUAD data). Data set 31 is from TCGA (LUSC).
Data set 32 consists of mesenchymal stromal cells iso-
lated from bone marrow [59]. Data set 33 consists of
placenta samples from mothers of monozygotic and di-
zygotic twins [60]. Data set 34 consists of prostate sam-
ples from [61]. Data set 35 consists of normal adjacent
prostate tissue from TCGA (PRAD data). Data set
36 consists of male saliva samples from [62]. Data set 37
consists of male saliva samples from [23]. Data set 38
consists of stomach from TCGA (STAD data). Data set
39 consists of thyroid TCGA (THCA data). Data set 40
consists of whole blood from type 1 diabetics [10,63].
Data set 41 consists of whole blood from [15]. Data sets
42 and 43 consist of involve whole blood samples from
women with ovarian cancer and healthy controls, re-
spectively; these are the samples from the United
Kingdom Ovarian Cancer Population Study [10,63]. Data
set 44 consists of whole blood from [64]. Data set 45 con-
sists of leukocytes from healthy children of the Simons
Simple Collection [46]. Data set 46 consists of peripheral
blood mononuclear cells from [65]. Data set 47 consists
of peripheral blood mononuclear cells from [66]. Data
set 48 consists of cord blood samples from newborns
provided by N Turan and C Sapienza (GEO GSE36812).
Data set 49 consists of cord blood mononuclear cells
from [67]. Data set 50 consists of cord blood mono-
nuclear cells from [60]. Data set 51 consists of CD4 T
cells from infants [68]. Data set 52 consists of CD4+ T
cells and CD14+ monocytes from [15]. Data set 53 con-
sists of immortalized B cells and other cells from pro-
geria, Werner syndrome patients, and controls [69].
Data sets 54 and 55 are brain samples from [70]. Data
sets 56 and 57 consist of breast tissue from TCGA (27K
and 450K platforms, respectively). Data set 58 consists
of buccal cells from [71]. Data set 59 consists of colon
from TCGA (COAD data). Data set 60 consists of fat
(adipose) tissue from [72]. Data set 61 consists of human
heart tissue from [27]. Data set 62 consists of kidney
(normal adjacent) tissue from TCGA (KIRC). Data set
63 consists of liver (normal adjacent tissue) from TCGA
(LIHC data). Data set 64 consists of lung from TCGA.
Data set 65 consists of muscle tissue from [72]. Data set
66 consists of muscle tissue from [73]. Data set 67 con-
sists of placenta samples from [74]. Data set 68 consists
of female saliva samples [62]. Data set 69 consists of uter-
ine cervix samples from [50,75]. Data set 70 consists
of uterine endometrium (normal adjacent) tissue from
TCGA (UCEC data). Data set 71 consists of various hu-
man tissues from the ENCODE/HAIB Project (GEO
GSE40700). Data set 72 consists of chimpanzee and hu-
man tissues from [27]. Data set 73 consists of great ape
blood samples from [28]. Data set 74 consists of sperm
samples from [76]. Data set 75 consists of sperm sam-
ples from [77]. Data set 76 consists of vascular endothe-
lial cells from human umbilical cords from [60]. Data
sets 77 and 78 (special cell types) involve human embry-
onic stem cells, iPS cells, and somatic cell samples mea-
sured on the Illumina 27K array and Illumina 450K
array, respectively [78]. Data set 79 consists of repro-
grammed mesenchymal stromal cells from human bone
marrow (iP-MSC), initial mesenchymal stromal cells,
and embryonic stem cells [79]. Data set 80 consists of
human ES cells and normal primary tissue from [80].
Data set 81 consists of human ES cells from [81]. Data
set 82 consists of blood cell type data from [82].

Description of the cancer data sets
An overview of the cancer tissue and cancer cell line
data sets is provided in Additional file 12. More details
can be found in Additional file 2.
All data are publicly available as can be seen from the

column that reports GSE identifiers from the GEO data-
base and other online resources. Most cancer data sets
came from TCGA. Data set 3, GBM from [44]; data set
4, breast cancer from [83]; data set 5, breast cancer from
[84]; data set 6, breast cancer from [50]; data set 10,
colorectal cancer from [39]; data set 23, prostate cancer
from [61]; data set 30, urothelial carcinoma from [85].
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DNA methylation profiling and normalization steps
All of the public Illumina DNA data were generated by
following the standard protocol of Illumina methylation
assays, which quantifies DNA methylation levels by the
β value. A detailed description of the pre-processing and
data normalization steps is provided in Additional file 2.

Meta analysis for measuring pure age effects (irrespective
of tissue type)
I used the metaAnalysis R function in the WGCNA R
package [86] to measure pure age effects (Additional file 9)
as detailed in Additional file 2.

Analysis of variance for measuring tissue variation
To measure tissue effects in the training data (Additional
file 8), I used analysis of variance (ANOVA) to calculate
an F statistic as follows. First, a multivariate regression
model was used to regress each CpG (dependent vari-
able) on age and tissue type. The analysis adjusted for
age since the different data sets have very different mean
ages (Additional file 1). Next, ANOVA based on the
multivariate regression model was used to calculate an F
statistic, F.tissueTraining, for measuring the tissue effect
in the training data. This F statistic measures the tissue
effect after adjusting for age in the training data sets. I
did not translate the F statistic into a corresponding P-
value since the latter turned out to be extremely signifi-
cant for most CpGs. Additional file 8D shows that F.
tissueTraining is highly correlated with an independent
measure of tissue variance (defined using adult somatic
tissues from data set 77).

Characterizing the CpGs using sequence properties
I studied occupancy counts for Polycomb-group target
(PCGT) genes since they have an increased chance of be-
coming methylated with age compared to non-targets [10].
Toward this end, I used the occupancy counts of Suz12,
Eed, and H3K27me3 published in [87]. To obtain the pro-
tein binding site occupancy throughout the entire nonrepeat
portion of the human genome, Lee et al. [87] isolated DNA
sequences bound to a particular protein of interest (for ex-
ample, Polycomb-group protein SUZ12) by immunopreci-
pitating that protein (chromatin immunoprecipitation) and
subsequently hybridizing the resulting fragments to a DNA
microarray. More details on the chromatin state data from
[29] can be found in Additional file 2.

Additional files

Additional file 1: DNA methylation data involving healthy
(non-cancer) tissue. The rows correspond to 82 publicly available
Illumina data sets. Column 1 reports the data set number and
corresponding color code. Other columns report the source of the DNA
(for example, tissue), Illumina platform, sample size n, proportion of
females, median age, age range (minimum and maximum age), relevant
citation (first author and publication year), public availability (for example,
GEO identifier). The column ‘Data Use’ reports whether the data set was
used as a training set, test set, or served another purpose. The table also
reports the age correlation, Cor(Age, DNAmAge), median error, and
median age acceleration for DNAm age. The last two columns of the
table report the age correlation (Cor LOOCV) and median error (Error
LOOCV) resulting from a leave-one-data-set-out cross-validation analysis.

Additional file 2: Materials and methods supplement. This
document has the following sections: Limitations; Description of the
healthy tissue and cell line data sets; Criteria guiding the choice of the
training sets; Description of the cancer data sets; DNAm profiling and
pre-processing steps; Normalization methods for the DNA methylation
data; Explicit details on the definition of DNAm age; Chromatin state data
used for Additional file 9; Comparing the multi-tissue predictor with
other age predictors; Meta analysis for finding age-related CpGs; Variation
of age related CpGs across somatic tissues; Studying age effects using
gene expression data; Meta-analysis applied to gene expression data;
Names of the genes whose mutations are associated with age
acceleration; Is DNAm age a biomarker of aging?

Additional file 3: Coefficient values for the DNAm age predictor.
This Excel file provides detailed information on the multi-tissue age
predictor defined using the training set data. The multi-tissue age
predictor uses 353 CpGs, of which 193 and 160 have positive and
negative correlations with age, respectively. The table also represents the
coefficient values for the shrunken age predictor that is based on a
subset of 110 CpGs (a subset of the 353 CpGs). Although this information
is sufficient for predicting age, I recommend using the R software tutorial
since it implements the normalization method. The table reports a host
of additional information for each CpG, including its variance, minimum
value, maximum value, and median value across all training and test
data. Further, it reports the median beta value in subjects aged younger
than 35 years and in subjects older than 55 years.

Additional file 4: Age predictions in blood data sets. (A) DNAm age
has a high correlation with chronological age (y-axis) across all blood
data sets. (B-S) Results for individual blood data sets. The negligible age
correlation in panel 0) reflects very young subjects that were either zero
or 0.75 years (9 months) old. (S) DNAm age in different cord blood data
sets (x-axis). Bars report the mean DNAm age (±1 standard error). The
mean DNAm age in data sets 6 and 50 is close to its expected value
(zero) and it is not significantly different from zero in data set 48. (T)
Mean DNAm age across whole blood, peripheral blood mononuclear
cells, granulocytes as well as seven isolated cell populations (CD4+ T
cells, CD8+ T cells, CD56+ natural killer cells, CD19+ B cells, CD14+
monocytes, neutrophils, and eosinophils) from healthy male subjects [82].
The red vertical line indicates the average age across subjects. No
significant difference in DNAm age could be detected between these
groups, but note the relatively small group sizes (indicated by the grey
numbers on the y-axis).

Additional file 5: Age predictions in brain data sets. (A) Scatter plot
showing that DNAm age (defined using the training set CpGs) has a high
correlation (cor = 0.96, error = 3.2 years) with chronological age (y-axis)
across all training and test data sets. (B-J) Results in individual brain data
sets. (G) The brain samples of data set 12 are composed of 58 glial cell
(labeled G, blue color), 58 neuron cell (labeled N, red color), 20 bulk
(labeled B, turquoise), and 9 mixed samples (labeled M, brown). (K)
Comparison of mean DNAm ages (horizontal bars) across different brain
regions from the same subjects [48] reveals no significant difference
between temporal cortex, pons, frontal cortex, and cerebellum. Differing
group sizes (grey numbers on the y-axis) reflect that some suspicious
samples were removed in an unbiased fashion (Additional file 2). (L) Using
data sets 54 and 55, I found no significant difference in DNAm age (x-axis)
between cerebellum and occipital cortex from the same subjects [70].

Additional file 6: Age predictions in breast data sets. (A) DNAm age
is highly correlated with age across all breast data sets, but the high error of
12 years reflects accelerated aging in normal adjacent breast cancer tissue
(data sets 56, 57). (B-D) Relationship between DNAm age and chronological
age in individual data sets. As expected, the lowest error (8.9 years) is
observed in normal breast tissue (training data set 14, panel (B)).
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Additional file 7: Ingenuity Pathway Analysis. The document
describes the results from applying Ingenuity Pathway Analysis to the 353
genes that are located near the 353 clock CpGs. Top biological function
analysis implicated cell death/survival (74 genes, P = 1.1E-7) and cellular
growth/development (71 genes, P = 3.7E-5). Significant overlap can be
observed for the following disease-related gene sets: cancer (109 genes,
P = 9.2E-5), endocrine system disorder (28, P = 2.6E-4), hereditary disorders
(50 genes, 2.6E-4), and reproductive system disease (37 genes, P = 2.6E-4).
Significant Ingenuity networks include a) hematological system development,
tissue morphology, cell death and survival (P = E-37), b) cellular growth and
proliferation, cell signaling, developmental disorder (P = E-37).

Additional file 8: Marginal analysis of CpGs. The figure shows how
individual CpGs (corresponding to points) relate to age and tissue
variation. Red and blue points correspond the 193 positively and the 160
negatively related clock CpGs, respectively. (A) The variance across adult
somatic tissues is highly correlated with variance across fetal somatic
tissues, which illustrates that it is robustly defined. Note that data set 77
[78] was not used for defining DNAm age. (B,C) Average variance of
DNAm levels across adult and fetal somatic tissues, respectively. The blue
and red bars correspond to groups of positively and negatively related
clock CpGs, respectively. (D) Tissue variance across the training data (F
statistic from ANOVA) is highly correlated (cor = 0.73) with tissue variance
across adult somatic tissues (data set 77), which illustrates that tissue
variance is robustly defined. (E) Pure (unconfounded) age effects in the
training data (x-axis) relate to those in all data sets (y-axis). To estimate
pure age effects, I used a meta-analysis method that implicitly conditions
on data set (Materials and methods; Additional file 2). The logarithm
(base 10) of the meta-analysis P-value was multiplied by −1 or 1 so that
high positive (negative) values indicate that the CpG is positively
(negatively) correlated with age. The high correlation illustrates that little
information is lost by focusing on the training data. Further, note that the
most significantly positively (red dots) and negatively related CpGs (blue
dots) are used in the epigenetic clock. (F) Tissue variance in the training
data (y-axis) versus the signed logarithm of the meta-analysis P-value in
the training data (x-axis).

Additional file 9: Characterizing the clock CpGs using DNA
sequence properties. Figure titles are preceded by ‘ + ’ or ‘-’ if they
report properties of positively related or negatively related clock CpGs,
respectively. Panels in the first row (A-E) relate the clock CpGs to
chromatin state annotation provided in [29]. The y-axis reports the mean
number of cell lines (out of 9 cell lines) for which the CpGs were in the
chromatin state mentioned in the title. (A) The bar plots shows that the
193 positively related CpGs were significantly (P = 1.6E-6) less likely to be
in chromatin state 1 (active promoters) than the other 21k CpGs, which is
not the case for the 160 negatively related CpGs (C). (B) Positively related
CpGs were more likely to be in chromatin state 3 regions (poised
promoters). (D) Negatively related CpGs were more likely to be in chromatin
states 2 (weak promoters). (E) Negatively related CpG are often located
chromatin state 4 regions (strong enhancers). (F) No significant relationship
with CpG island status can be observed for the positively related CpGs. (K)
Negatively related CpGs are significantly over-represented in shores. (G)
Positively related CpGs were outside of RNApol2 bound regions (annotation
from [87]). This is not the case for negatively related CpGs (L). (H-J) Positively
related CpGs are over-represented near Polycomb-group target genes, that is,
in regions with high occupancy of Suz12 (P = 7.1E-6, H), EED (P = 0.0030, I),
and H3K27m3 (P = 0.0048, J). This is not the case for the negatively related
CpGs (M-O).

Additional file 10: Estimating the heritability of age acceleration. Two
twin data sets (data sets 41 and 50) are used to estimate the broad sense
heritability of accelerated age (defined as difference between DNAm age
and chronological age). (A,E) Age histograms for data set 41 (median age
63 years, all females) and data set 50 (composed of newborns), respectively.
(B,F) All twins irrespective of zygosity. Each point corresponds to a twin pair
and is colored red if the twins are monozygotic. Age acceleration of the first
twin (randomly chosen) versus that in the second twin, respectively. (C,G)
Monozygotic twins only. (D,H) Dizygotic twins only. The high correlations in
monozygotic twins (cor = 0.4 for data set 41 and cor = 0.77 for data set 50)
contrast sharply with those observed for dizygotic twins (cor = 0.20 and
cor = −0.21).
Additional file 11: Aging effects in gene expression (mRNA) and
DNAm data. Due to space limitations, I can only report results for the
direct approach of matching each individual CpG to its corresponding
gene symbol. Using publicly available gene expression data (Additional
file 2), I do not find a significant relationship between age effects on
messenger RNA levels and age effects on DNAm levels in (A) blood, (C)
brain, (E) kidney, (G) muscle, and (I) CD8 T cells. For each data modality, I
estimated ‘pure’ age effect using a meta-analysis method that
conditioned on data (as described in Additional file 2). The y-axis reports
a signed logarithm (base 10) of the meta-analysis P-value, that is, a high
positive (negative) value indicates that the gene expression level
increases (decreases) with age. Gene expression data and CpG data were
matched according to gene symbol as described in [88]. Each point in
the scatter plots corresponds to a CpG (x-axis) and the corresponding
gene symbol (y-axis). Genes corresponding to the positively related and
negatively related clock CpGs are colored in red and blue, respectively.
(B,D,F,H,J,L) Mean age effect (y-axis) across gene groups defined by their
corresponding CpG. (K,L) Aging effects on DNAm levels (x-axis) do not
affect genes known to be differentially expressed between naive CD8 T
cells and CD8 memory cells. The y-axis reports the signed logarithm of
the Student t-test P-value of differential expression.

Additional file 12: Description of cancer data sets. The file describes
32 publicly available cancer tissue data sets and 7 cancer cell line data
sets. Column 1 reports the data number and corresponding color code.
Other columns report the affected tissue, Illumina platform, sample size n,
proportion of females, median age, age range (minimum and maximum
age), relevant citation (TCGA or first author with publication year), and
public availability. None of these data sets were used in the construction
of estimator of DNAm age. The table also reports the age correlation, cor
(Age,DNAmage), median error, and median age acceleration.

Additional file 13: DNAm age versus chronological age in cancer.
Each point corresponds to a DNA methylation sample (cancer sample from
a human subject). Points are colored and labeled according to the
underlying cancer data sets as described in Additional file 12. (A) Across all
cancer data sets, there is only a weak correlation (cor = 0.15, P = 1.9E-29)
between DNAm age (x-axis) and chronological patient age (y-axis). The high
error (40 years) reflects high age accelerations. (B) Each cancer/affected
tissue shows evidence of significant age acceleration (y-axis) with an
average age acceleration of 36.2 years. (C-W) Results for individual cancers/
affected tissues. Several cancer tissues maintain moderately large age
correlations (larger than 0.3), including brain (cor = 0.61) (E), thyroid
(cor = 0.6) (U), kidney (cor = 0.45) (K,L), liver (cor = 0.42) (M), colorectal
(cor = 0.37) (I), and breast (cor = 0.31) (F).

Additional file 14: Age acceleration versus tumor grade and stage.
Panels correspond to the cancer data sets described in Additional file 12.
Nominally significant negative correlations between grade and age
acceleration can be observed in ovarian serous cystadenocarcinoma
(panel G; P = 0.032) and uterine corpus endometroids (panel J; P = 0.019).
A nominally significant positive correlation between stage and age
acceleration can be observed for colon adenocarcinoma (panel O; P =
0.021). Only the highly significant negative correlation between stage and
age acceleration in thyroid cancer (panel Z; P = 8.7E-9) remains
significant after adjusting for multiple comparisons. Since grade and
stage are often considered as ordinal variables, correlation test P-values
are reported in all panels except the last. (H) For prostate cancer, the x-
axis reports the Gleason sum score. The last panel shows that mean age
acceleration in acute myeloid leukemia is not significantly related to
French American British (FAB) morphology but some groups (notably M6
and M7) are very small (rotated grey numbers).

Additional file 15: Age acceleration versus mutation count status in
breast cancer. Mutation count status (x-axis) was defined by assigning
tumor samples to the high mutation count group if their number of
somatic mutations was larger than 50. Other thresholds lead to similar
results. (A-L) Findings for Illumina 27K (A-F) and 450K data (G-L). (A,G)
The barplots show that mean age acceleration (y-axis) is lower in breast
cancer samples with high mutation count (compared to those samples
whose somatic mutation count is less than 50). This result can also be
found in ER+ (B,H), ER- (C,I), PR + (D,J), PR- (E,K), and triple negative (F,L)
breast cancer samples.
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Additional file 16: Selected significant gene mutations versus age
acceleration. The TCGA data sets were stratified by cancer type and
Illumina platform. Mean age acceleration (y-axis) versus mutation status
(x-axis) for up to two of the most significant genes per data set. Note
that age acceleration in bone marrow (AML) was most highly related to
mutation in the following two genes: U2AF1 and TP53. Age acceleration
in the two breast cancer data sets was most highly related to mutations
in GATA3, TP53, and TTN. For kidney renal cell carcinoma (KIRC): only
AKAP9 was significant. Strikingly, TP53 was among the top two most
significant mutated genes in 4 out of 13 cancer data sets. More
information on these genes is presented in Additional file 2.

Additional file 17: Effect of TP53 mutation on age acceleration.
Mutations in TP53 are associated with significantly lower age acceleration
in five cancers: including AML (P = 0.0023), breast cancer (P = 1.4E-5 and
P = 3.7E-8), ovarian serous cystadenocarcinoma (P = 0.03) (I), and uterine
corpus endometrioid (P = 0.00093). Marginally significant results could be
observed in lung squamous cell carcinoma (P = 0.047 for the 27K data
but insignificant results for the 450K data).

Additional file 18: DNAm age of cancer cell lines. (A) A high
variation of DNAm age (x-axis) can be observed across various cancer
lines lines (y-axis). The DNAm age is reported in Additional file 19. (B)
Across all cell lines, DNAm age (x-axis) does not have a significant
correlation with the chronological age of the patient from whom the
cancer cell line was derived. (C) Results for osteosarcoma cell lines.

Additional file 19: Cancer lines and DNAm age. This Excel file reports
the DNAm age and age acceleration for 59 cancer cell lines.

Additional file 20: R software tutorial. This file contains an R software
tutorial that describes how to estimate DNAm age for data set 55.
Further, it shows how to relate two measures of age acceleration to
autism disease status. The R tutorial requires Additional files 21, 22, 23, 24,
25, 26 and 27 as input.

Additional file 21: Probe annotation file for the Illumina 27K array.
This comma-delimited text file (.csv file) is needed for the R software
tutorial.

Additional file 22: Additional probe annotation file for the R
tutorial. This comma-delimited text file (.csv file) is needed for the
R software tutorial.

Additional file 23: Coefficient values of the age predictor. This
comma-delimited text file (.csv file) is needed for the R software tutorial.
This file is very similar to Additional file 3 but rows appear in a different
order.

Additional file 24: R code for normalizing the DNA methylation
data. This text file is needed for the R software tutorial. It contains R
code for normalizing the DNA methylation data and adapts R functions
described in [89].

Additional file 25: This text file is needed for the R software
tutorial. It contains R code implementing analysis steps.

Additional file 26: Methylation data from data set 55. This comma-
delimited text file (.csv file) contains the DNA methylation data needed
for the R software tutorial.

Additional file 27: This comma-delimited text file (.csv file) contains
the sample annotation data needed for the R software tutorial.
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