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ABSTRACT

Self-renewal and multilineage differentiation of stem cells are keys to the lifelong homeostatic
maintenance of tissues and organs. Hematopoietic aging, characterized by immunosenescence,
proinflammation, and anemia, is attributed to age-associated changes in thenumber and functionof
hematopoietic stem cells (HSCs) and their microenvironmental niche. Genetic variants and factors
regulating stem cell aging are correlatively or causatively associated with overall organismal aging
and longevity. Translational use of HSCs for transplantation and gene therapy demands effective
methods for stem cell expansion. Targeting the molecular pathways involved in HSC self-renewal,
proliferation, and homing has led to enhanced expansion and engraftment of stem cells upon trans-
plantation. HSC transplantation is less effective in elderly people, even though this is the demo-
graphic with the greatest need for this form of treatment. Thus, understanding the biological
changes in the aging of stem cells as well as local and systematic environments will improve the
efficacy of aged stem cells for regenerative medicine and ultimately facilitate improved health and
life spans. STEM CELLS TRANSLATIONAL MEDICINE 2012;1:651–657

STEM CELL AGING

Stem cells are key to the homeostatic mainte-
nance of mature and functional tissues and or-
gans. They self-renew and produce progeny to
replenish dying or damaged cells throughout
an organism’s lifetime. Because of these
unique characteristics, stem cells are tradition-
ally thought to be immortal and exempt from ag-
ing. However, a reduced ability to repair tissues
and an increased susceptibility to cancer during
aging indicates that stem cells may undergo an
age-related functional decline. Because of the
unprecedented experimental model systems
that are available for the exploration of hemato-
poietic stem cells (HSCs), stem cell behavior in
aged versus younger populations inmice and hu-
mans has been extensively investigated. Thus,
HSC aging has served as an idealmodel for study-
ing the interplay of stem cells, aging, and age-
related diseases. It is likely that the same broad
concepts that define and characterize blood-
forming stem cells would apply to other types of
stem cells [1]. A clear understanding of stem cell
regulation in the aging process could provide im-
portant information for the efficient use of stem
cells for treating age-associated diseases.

AGING OF THE HEMATOPOIETIC SYSTEM

At the apex of the hematopoietic hierarchy,
HSCs are responsible for lifelong production of

all types of blood cells. The functional capacity
and quantity of blood cells change dramati-
cally with age, and immune deficiency and ane-
mia are considered major contributory factors
to the increased morbidity and mortality in
aged populations [2]. Immune responses are
induced by coordination of adaptive and in-
nate immune systems, which involve lymphoid
(B, T lymphocytes) and myeloid leukocytes, re-
spectively. As age advances, a dramatic decline
in the production of naïve T cells is apparent as
well as an accumulation and clonal expansion
of memory and effector T cells leading to de-
creased immune defense and increased auto-
immunity among the elderly [3]. The number
of B cells decreases with age, and old B cells
generate antibodies with less affinity and di-
versity [4]. In contrast to the lymphoid lineage,
myeloid compartments are expanded with ag-
ing, which provides a proinflammatory envi-
ronment in the body, becoming detrimental
later in life [5]. Furthermore, other types of
immune cells, such as natural killers and den-
dritic antigen-presenting cells, have been
shown to diminish and functionally deteriorate
with old age [6, 7]. These “immunosenes-
cence” and “inflammaging” phenotypes are
implicated in many pathologically significant
health problems in aged populations, such as
cancer, autoimmune diseases, and chronic in-
flammatory disorders.

TISSUE-SPECIFIC PROGENITOR AND STEM CELLS
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HSC AGING AT THE POPULATION LEVEL

HSCs are the foundation of the blood system, and aging pheno-
types in peripheral blood cells could be caused by a decline in
HSC numbers in old age. However, the relationship is clearly not
that simple. The evidence that the number of human or mouse
HSCs declines sufficiently in old age to threaten adequate blood
cell production is not compelling. Instead, recent studies in aging
of human HSCs show that the proportion of immunophenotypi-
cally defined hematopoietic stem/progenitor cells, either
CD34�CD38� or more primitive Lin�CD34�CD38�CD90�
CD45RA� cells, increases in the bone marrow of elderly individ-
uals (�65 years) [8, 9]. In contrast, the frequency of lymphoid
progenitor cells dramatically decreaseswith age,which accounts
for lymphoid deficiency in the elderly [8]. Although the myeloid
progenitor population was found to persist at the same level in
the bone marrow during aging, its relative composition in blood
cells is indeed increased, which may explain age-associated my-
eloid skewing [9]. A very recent study identified CD49f as a novel
marker for specifying more primitive HSCs in humans [10]. By
adding CD49f-positive selection on Lin�CD34�CD38�CD90�
CD45RA� cells, HSCs from human cord blood can be further
enriched by approximately twofold. It will be of interest to
determine whether this newly refined HSC population also
demonstrates age-associated expansion. In mouse HSC aging,
we and others identified changes similar to those in humans,
such as an increased HSC number and myeloid skewing and
lymphoid deficiency in old mice, despite a large strain-specific
difference in the maintenance of the HSC population during
aging [11–17].

Twomodels are proposed forHSC aging at a population level:
(a) a clonal alteration model, and (b) a population shift model
[18]. The clonal alteration model emphasizes uniform change of

HSCs with aging as a homogeneous population, among which an
individual aged stem cell differentiates toward the myeloid lin-
eage at the expense of the lymphoid lineage. Recently, accumu-
lating evidence from several laboratories has suggested a popu-
lation shift model of HSC aging, which implies that HSCs are
heterogeneous and age-related hematopoietic phenotypes are
derived from a changing composition of distinct classes of HSCs
[17, 19–22] (Fig. 1). Within the HSC compartment in mice, three
classes of HSCs are evident: balanced, lymphoid-biased (Ly-bi),
and myeloid-biased (My-bi) stem cells. All three subsets of HSCs
exist in both young and old marrows, but the composition shifts
with aging such that the My-bi HSC subpopulation is selectively
expanded and becomes dominant in old marrow. In humans,
characterization of bone marrow HSCs and their age-associated
changes has lagged behind, largely because of insufficient infor-
mation for markers that distinguish subsets of HSCs. However,
clinical trials of stem cell gene therapy provide a unique oppor-
tunity for probing the model of HSC clonal diversity in humans
[23]. In this therapy, mutated genes in HSCs are corrected by
viral vector-mediated genetic replacement, and gene-modi-
fied HSCs are transplanted into patients. The lineage recon-
stitution of injected stem cells is evaluated by vector integra-
tion sites (ISs) in the genome. Several studies show that ISs are
present only in lymphoid cells, supporting the existence of
lineage-biased stem cells in humans. In contrast, others find
that patients’ myeloid and lymphoid cells share common ISs,
an observation in favor of nonbiased hematopoiesis [23].
Thus, organization of the HSC hierarchy in humans and how it
changes with age remain largely elusive. Solving these puzzles
will help with selection of the optimal stem cell population for
gene modification to enhance the effectiveness of stem cell
gene therapy [24].

Figure 1. Aging of the hematopoietic stem cells and their niche. Hematopoietic stem cells (HSCs) and their bonemarrowmicroenvironmental
niche undergo age-related changes because of a burden of genomic damage, telomere dysfunction, metabolic byproducts, and epigenetic
shift during the aging process. At a young age, the composition of the HSC compartment, including myeloid-biased (My-bi) and lymphoid-
biased (Ly-bi) HSC subpopulations, and their differentiation capacity are homeostaticallymaintained, enabling a balanced production of blood
cells. In the old bone marrow, the HSC pool is expanded and My-bi HSCs become dominant over the Ly-bi population, resulting in a myeloid
skewing at the expense of lymphocytes. Aging of the niche results in decreased homing and enhanced mobilization of old HSCs, thus
demonstrating a reduced capacity to support HSC engraftment and differentiation in HSC transplantation. Note: analysis of the aging
literature suggests that ages older than 60–65 are commonly called “the older population ” [8–10, 67, 68, 82], even though “age” should be
defined by the functional analysis and there is no general agreement on the definitive cutoff for “old age” [22].
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HSC AGING AT THE CELLULAR LEVEL

Aging is accompanied by accumulation of genomic damage, telo-
mere shortening, and a burden of metabolic byproducts. All
these cellular changes activate multiple signaling pathways that
are involved in apoptosis, senescence, or impaired proliferation,
ultimately resulting in a functional decline of aged stem cells
[25–28]. HSCs from old mice have a decreased ability to recon-
stitute myeloablated recipient mice [11], are less efficient at
homing to and engrafting in the bone marrow of recipients [29],
and are more easily mobilized into peripheral blood [30]. Aged
HSCs are more actively cycling [11], although this appears to be
inconsistent with the report that the proliferative response of
HSCs to the early-acting cytokines c-kit ligand (KL), flt3 ligand
(FL), and thrombopoietin (TPO) decreases with age [15]. In hu-
mans, proliferative properties of HSCs from bone marrow of
aged people (�65 years old) are significantly higher than those
from young people (ages 20–30) [8, 9]. Elderly human HSCs xe-
notransplanted into immunodeficient mice do not engraft or
generate lymphoid progeny as efficiently as young cells [8], al-
though another study has shown that aging does not affect the
repopulating capacity of human HSCs [9]. The reason for this
inconsistency may be that transplanted cells are not the same
because of different stem cell makers used in two studies
(Lin�CD34�CD38�CD90�CD45RA� vs. CD34�CD38�). Again,
these studies emphasize the importance of improving methods
for isolation of “true” HSCs and distinguishing them from down-
stream human hematopoietic progenitors.

HSC AGING AT THE MOLECULAR LEVEL

Decipheringmolecular events regulating self-renewal andmulti-
potency in stemcell aging is amajor challenge in the field of aging
research.Microarray analysis comparing profiles of young versus
old HSCs reveals a general aging signature of HSCs at the expres-
sion level. In both human andmouse, expression of genes linked
to oxidative stress, protein aggregation, and inflammatory re-
sponses increases with age, whereas genes involved in genomic
integrity (DNA repair and chromatin remodeling) and transcrip-
tional regulation are age-repressed [8, 31–33]. In addition, up-
regulation of myeloid genes and downregulation of lymphoid
genes are found in old HSCs, suggesting that age-related lineage
skewing is partly a consequence of transcriptional changes. A
recent study by Wang et al. has identified a novel DNA damage
checkpoint, Batf, and its role in regulating HSC functions [34].
DNA damage induced by irradiation and telomere dysfunction
elevates Batf expression, leading to restriction of self-renewal
and induction of differentiation in stem cells. Age-associated ac-
cumulation of DNA damage occurs in bothMy-bi and Ly-bi HSCs.
However, My-bi HSCs appear more resistant to DNA-damage-
induced differentiation and depletion than Ly-bi HSCs, perhaps
because Batf is less abundant in My-bi cells. Thus, differential
expression of Batf in lineage-biased HSCs could be a molecular
checkpoint for the predominance of My-bi HSCs and increased
incidence of myeloidmalignancy in elderly people. A new insight
into molecular regulation of HSC aging has been revealed by
linking intracellular activity of small RhoGTPase Cdc42 to the de-
creased HSC functionality with aging [35]. Florian et al. found
that intrinsic Cdc42 activity in HSCs increases with natural aging
and that enforced activation of Cdc42 in genetically modified
HSCs leads to a premature hematopoietic aging phenotype [35].

More interestingly, Cdc42 distribution in the cytoplasm is polar-
ized in young HSCs but diffusely distributed in aged ones. Phar-
macological inhibition of Cdc42 in aged stem cells not only re-
stores their polarity but also rejuvenates them to a youthful
state.

Epigenetics is emerging as a particularly intriguing new fron-
tier for HSC aging research [36]. Epigenetic modifications, most
commonly in methylation status changes of DNA and biochemi-
cal modifications of core histones, have been shown to accumu-
late with age and lead to the cumulative loss of gene regulation
over time [37]. Although little is known about the epigenome of
old HSCs, several studies have highlighted the important role of
DNA methylation and histone modification in regulating young
HSCs. Conditional deletion of DNA methyltransferases causes
defects in stem cells regarding self-renewal, retention in bone
marrow niches, and myeloid cell production [38, 39]. Histone
proteins (H2a.x and its familymembersH2a.z andH3) are the key
modifiers of chromatin regions important for transcriptional reg-
ulation of genes that are implicated in stem cell proliferation and
lineage differentiation [40–42]. Moreover, development of
high-throughput sequencing techniques has facilitated the char-
acterization of an HSC-specific methylome that is distinct from
mature blood cells in both human andmouse [43–45]. However,
none of these studies were carried out in the context of aging. It
will be interesting to investigate how these epigenetic factors
regulate stem cell aging and how age-related changes in tran-
scriptome are linked to those in the epigenome of HSCs.

AGING OF THE HEMATOPOIETIC STEM CELL NICHE

A majority of adult HSCs reside in a discrete niche in the bone
marrow composed of a collection of specific cells and extracellu-
lar matrix proteins that provides a nurturing microenvironment.
HSC activity depends on both intrinsic properties of the cell and
extrinsic signals from niche [46]. The precise mechanism of the
interplay of HSCs with their local environment, especially in the
aging process, is largely unknown. However, it is certain that
decreased bone formation, loss of bonemass, and accumulation
of fat in the marrow become more pronounced with advancing
age, leading to the altered composition of cell types and extra-
cellular matrix in the niche. The candidate niche cells include
osteoblasts [47], Cxcl12-abundant reticular cells [48], nestin-
positive mesenchymal stem cells [49], Schwann cells [50], and
perivascular cells [51], which constitute the endosteal and vas-
cular regions of niche. It has been shown that aging causes a
decrease in the number of mesenchymal stem cells and a skew-
ing of their differentiation toward adipocytes in the old marrow
of both mouse and human [52, 53]. Transforming growth fac-
tor-� is an important regulator of HSC quiescence and self-re-
newal [50, 54], whose presence in the niche decreases with age
[53]. Age-associated telomere shorting leads to abnormal cyto-
kine production and functional decline in niche mesenchymal
progenitor cells, resulting in a reduced capacity of the aged mi-
croenvironment to support HSC engraftment and differentiation
[55]. Thus, aging has a potential to compromise the cross-talk
between stem cells and supportive niches, thus contributing to
HSC aging. Two possible models are proposed for the effects of
niche on HSC aging (Fig. 1): (a) signals from niche cells uniformly
regulate lineage-biased HSC populations during aging (Fig. 1,
top); and (b) distinct signals from niche cells dictate the develop-
ment of different lineage-biased HSC subsets and, with aging,
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cause selective expansion or loss of specific HSC lineages (Fig. 1,
bottom).

HEMATOPOIETIC STEM CELL AGING AND ORGANISMAL LIFE SPAN
Accumulated multiorgan changes with aging limit longevity.
There are two general theories of organismal aging and longev-
ity: (a) antagonistic pleiotropy, and (b) damage-based. The for-
mer postulates that evolution selects a genetic composition that
confers overall higher survival and/or fecundity. Genes that are
beneficial early in life are conserved, although they may be det-
rimental in late life; thus, they are pleiotropic and their resulting
effects are antagonistic. Cellular senescence is proposed to be an
example of antagonistic pleiotropy given that it prevents cancer
during early life, whereas later in life it contributes to decreased
regenerative capacity of tissues [56]. The damage theory empha-
sizes that aging is caused by accumulated cellular damage over a
lifetime, such as via reactive oxygen species, cross-linked pro-
teins, free radicals, and genetic mutations [57, 58]. Aging is a
complex process that affects every cell in the body. As long-lived
cells, stemcells are exposed to both intrinsic and extrinsic assault
over their lifetime. Thus, it has been hypothesized that aging or
functional failure of tissue-specific stem cells may limit tissue
repair and renewal, thereby contributing to overall organismal
aging and life span reduction [57].

A recent finding concerning the novel function of PGC-1 tran-
scriptional regulators provides direct evidence for the interrela-
tionship between stem cell aging and longevity in Drosophila
[59]. Overexpression of PGC-1 in intestinal stem/progenitor cells
delays the onset of aging-related changes and improves homeo-
stasis in the intestine, leading to an extended life span. The un-
derlying cellular mechanisms are enhanced mitochondrial bio-
genesis and energymetabolism. Interestingly, PGC-1 is regulated
by Lkb1, which is an evolutionarily conserved regulator of cellular
energymetabolism. Lkb1was recently found to be critical for the
survival of HSCs in mice. Loss of Lkb1 leads to the impairment of

HSC self-renewal and quiescence and thus to exhaustion of the
HSC pool. Lkb1 knockout mice demonstrate high prenatal lethal-
ity and a shorter life span because of severe blood cytopenia
[60–62]. Thus, the effect of Lkb1 on organismal longevity is
through the regulation of metabolic homeostasis in stem cells.

Genetic variants play a critical and complex role in conferring
exceptional longevity. However, it is difficulty to probe these
variants and their combined effect on longevity through classic
modification (knockout or knockin) of genes of interest in animal
models. Thus, a surrogate systemusing a variety of inbredmouse
strains aids in revealing these longevity-associated variants. In-
bred mouse strains demonstrate wide natural variation in life
span and quantitative phenotypes in the HSC population. Using
quantitative trait loci mapping, we and others identified several
murine loci tightly linking age-associated changes in the number
and proliferation of hematopoietic stem/progenitor cells to life
span [63–65]. These results reinforce the notions that stem cell
dynamics during aging may have an effect on longevity and that
the same gene(s) may regulate both traits. Although much re-
search remains to be done to identify the underlying gene(s) and
its mode of action, given these correlative data, we have postu-
lated that adult stem cells, especially blood-forming tissues but
perhaps more generally those in a variety of organs, collectively
affect longevity by influencing the replacement of organ-specific
effector cells. Continuous replacement of short-lived blood cells,
including immune system cells, not only is a prerequisite for life
but is directly dependent on the function of stem and progenitor
cells (Fig. 2).

AGING AND HSC TRANSPLANTATION
Because of the extensive regenerative capacity of stem cells,
stem cell-based gene therapy and tissue regeneration hold con-
siderable promise for treating a range of serious diseases [66].
Among all stem cell-based therapies, hematopoietic stem cell
transplantation (HSCT) is the only one with a well-established

Figure 2. Effects of stem cell aging and rejuvenation on organismal longevity. During organismal aging, stem cells may undergo senescence
or apoptosis, they may become tumorigenic, or they may retain their “youthful” state. Age-associated changes in the stem cell population
underlie the increased disease incidence and decreased regenerative capacity in elderly people and ultimately produce negative effects on
organismal longevity. In order to counteract such deleterious effects, stem cell-based gene therapy and regenerative medicine hold great
promise in treating age-related degenerative and malignant diseases. These therapeutic strategies will, hopefully sooner rather than later,
improve health span and life span in humans.
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clinical regimen, and it remains an effective approach for pa-
tients with certain hematological diseases. HSCT involves the in-
travenous infusion of autologous (patient’s own cells) or alloge-
neic (from related or unrelated donors) stem cells collected from
bone marrow, mobilized peripheral blood, or umbilical cord
blood to the patients. Current clinical and experimental HSCTs
face two obstacles that limit the success of this treatment: insuf-
ficient numbers of transplantable stem cells and low engraft-
ment efficiency. These limitations are exacerbated by advancing
age [67]. The NationalMarrowDonor Program has reported that
donor age is the only factor significantly associated with overall
survival rate of HSCT recipients: the younger the donor, the bet-
ter the long-term outcome [68].

Why is HSCT less effective in old patients? One stem cell-
intrinsic limit is the telomere length. It has been shown that telo-
meres in stem/progenitor cells from human umbilical cord blood
are longer than those from adult bone marrow. Telomere loss in
hematopoietic cells is rapid within the first year of life, continues
to decline until 50–60 years of age, and then is exaggerated
beyond age of 70 [69]. Following HSCT, the telomere lengths of
engrafted donor cells are shorter than those preceding trans-
plant, probably because of the extensive replicative stress on
engrafted cells [70]. In one report of clinical HSCT, a 7-year-old
boy with acute lymphocytic leukemia was transplanted with
marrow cells from a 61-year-old donor [71]. Despite successful
engraftment, the patient experienced poor marrow function 2
years post-transplant. The telomere lengths of donor cells recov-
ered from thepatientwere significantly shorter than those of the
original donor cells. Thus, telomere attrition in aged donor cells
appears to correlate with poor graft function. Excessive produc-
tion of reactive oxygen species and accumulation of DNA dam-
age was also observed in hematopoietic stem/progenitor cells
isolated from bonemarrow of elderly healthy individuals (72–84
years) and HSCT patients [27]. Such damage significantly impairs
the repopulating activity of the aged and engrafted stem cells.
These scientific findings provide useful information for optimiz-
ing HSCT in the clinic in the following ways. (a) Age-related cellu-
lar changes, such as telomere length,may be a useful indicator of
proliferative and engraftment potential following transplant.
Pharmacological targeting of these events, such as preserving
telomere length, could potentially lead to amore effective HSCT.
(b) It may be necessary to limit the HSC donor pool to people
younger thanadefinedagetoensureeffectiveHSCT. (c)Cordblood-
derived HSCs are a promising alternative source of cells for trans-
plantation when a suitable autologous or allogeneic donor is not
available. However, the number of HSCs recovered from a unit of
cord blood is generally so low that it usually leads to the delayed
engraftment and increased transplant complications [72].

The development of methods to expand HSCs that simulta-
neously permit maintenance of their self-renewal capability and
of their engraftment efficiency is critical for the successful trans-
plant. Ex vivo expansion of human cord blood CD34� cells by
immobilized Notch ligand Delta greatly expands the stem cell
population and reduces the neutrophil engraftment time, and it
has been evaluated with significant therapeutic value in an on-
going clinical trial [73]. In vitro expansion potential has also been
described for the Wnt pathway participant prostaglandin E2
[74], soluble growth factor angiopoietin-like 5 (Angptl5), and
pleiotrophin [75–77], andmore recently for inhibition of the aryl
hydrocarbon receptor by small molecule StemRegenin1 (SR1)
[78] in xenotransplantation studies. A caveat for the expansion

ex vivo is that itmay lead to the loss of long-termengrafting HSCs
and perhaps graft failure. Rather than targeting HSC number,
enhancing homing of stem cells to the niche by the inhibition of
dipeptidylpeptidase IV (CD26) also improves the hematopoietic
engraftment and reconstitution [79]. Since HSCs undergo dra-
matic changes with aging, it is not known whether the treat-
ments described above will have similar effects on aged HSCs.
For example, Notch signaling pathway becomes downregulated
from fetal to adult stroma [80], indicating that Notch-mediated
HSC expansion may not be as effective in adult stem cells as in
cord blood. Thus, a better understanding of HSC aging will facil-
itate the development of treatment regimens that aremore suit-
able for the older patients having HSCTs and other stem cell-
mediated therapies.

There are multiple factors contributing to the inferior out-
come of HSCT in older patients, such as the disease prognosis
compared with younger patients, disease stage and type, and so
forth [81]. Systemic and hormonal changes associated with aging,
including changes in cytokine profiles to a more proinflammatory
state, sex steroid changes, and other hormonal changes, also influ-
ence HSCT effectiveness [82]. Parathyroid hormone has been used
in vivo to enhance engraftment of HSCs by modifying the murine
osteoblastic niche [83]. HSCs derived from old mice can be rejuve-
natedwhen theyareput into the young systemic environment [84].
Thus, therapeutic interference counteracting these extrinsic
changes may be an alternative or complementary approach to the
current strategies focusing exclusively on the HSC themselves.

CONCLUSION

Despite many exciting discoveries of intrinsic changes in stem
cells with aging, there are large gaps in our knowledge regarding
the stem cell microenvironmental niche and the effect of age on
it [46, 85, 86]. Methods enhancing intimate connections be-
tween HSCs and the niche would improve HSC homing and sur-
vival, which could further enhance engraftment efficiency [79,
87]. In addition, little is known about stem cell aging in humans,
despite a compelling unmet clinical need [88]. Successful clinical
HSCT in elderly recipientsmay requiremultiple strategies target-
ing different pathways. With advanced knowledge of induced
pluripotent stem cells or embryonic stem cells, we could use
these cells as alternative sources of hematopoietic stem/progen-
itor cells for transplantation in the future.
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