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Glioma, the most common central nervous system cancer in adults, has poor prognosis. We

identify a new glioma risk SNP, rs1920116 (near TERC), that reached genome-wide

significance (Pcombined=8.3×10−9) in a meta-analysis of high-grade glioma GWAS and

replication data (1644 cases, 7736 controls). This region has previously been associated with

mean leukocyte telomere length (LTL). We therefore examined the relationship between

LTL and both this new risk locus and other previously established glioma risk loci using

data from a recent GWAS of LTL (N=37684)1. Glioma risk alleles near TERC and TERT

were strongly associated with longer LTL (P=5.5×10−20 and 4.4×10−19, respectively). In

contrast, glioma risk alleles near RTEL1 were inconsistently associated with LTL and

suggested the presence of distinct causal alleles. No other glioma risk loci were associated

with LTL. The identification of glioma risk alleles near TERC and TERT which also

associate with telomere length implicates telomerase in gliomagenesis.

Glioblastoma, the most common and aggressive form of glioma, has a median survival time

of just 15 months2. Both inherited and acquired genetic variation influence gliomagenesis.

Previous glioma GWAS have discovered seven risk loci, including two near genes involved

in telomere dynamics (TERT and RTEL1)3-7. Acquired mutations in the TERT promoter

increase TERT expression and are observed in ~75% of glioblastomas8-10.

To identify novel glioma risk loci, we imputed thirty 500kb regions with at least one SNP

having a P-value <1.0×10−4 in our previous high-grade glioma GWAS (online methods)6.

The discovery phase meta-analysis combined the new imputation and existing genotyping

array data from The University of California, San Francisco Adult Glioma Study (AGS)6,11

with new data from The Cancer Genome Atlas (TCGA)12 and the Wellcome Trust Case-

Control Consortium (WTCCC)13 (1013 cases and 6595 controls). The replication phase used

criteria defined in the original high-grade glioma GWAS, evaluating SNPs with P<1.0×10−6

in an additional 631 glioblastoma cases and 1141 controls from The Mayo Clinic and UCSF.

All individuals were of European ancestry. Supplementary Figure 1 and Supplementary

Table 1 summarize the study design and study populations.

From the discovery phase, only rs1920116 on chromosome 3q26.2 was associated with

glioma risk at P<1.0×10−6 (P=8.7×10−7). The association at rs1920116 was also significant

in the replication dataset (P=3.4×10−3). The combined P-value for all 1644 cases and 7736

controls in the discovery and replication data (8.3×10−9) achieved genome-wide statistical

significance (Table 1). Interestingly, the association peak for this novel glioma risk locus

encompasses the telomerase RNA component gene, TERC (Figure 1a).

Table 1 and Figures 1b-1c highlight findings for the other telomere-related glioma risk loci,

TERT and RTEL1, in these datasets. Interestingly, glioma risk alleles near TERC, TERT and

RTEL1 have similar effect sizes and are the major allele in all three regions. SNPs in TERC,

TERT and RTEL1 were independently associated with high-grade glioma risk; modeling the

effect of one SNP while controlling for the presence of the others did not attenuate
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associations. SNPxSNP interaction tests did not reveal any effect modification (Pmin=0.11).

Each additional risk allele in TERC, TERT and RTEL1 (range 0-6) contributed to glioma risk

in a monotonic increasing fashion (Supplementary Figure 2). We previously observed that

the effect of TERT and RTEL1 SNPs on glioma risk increases with age14. We observe

modest evidence of this effect at rs1920116 near TERC (P=0.098) (Supplementary Figure

3).

To determine if glioma risk loci influence telomere length in an independent dataset, we

examined SNP data from a recent GWAS of mean LTL conducted in 37,684 individuals of

European descent1. LTL association data were available for lead glioma risk SNPs near

TERC, TERT, EGFR, CCDC26, CDKN2B, PHLDB1, and RTEL13,4,6. The top glioma risk

alleles near TERC and TERT were strongly associated with longer LTL (P=5.5×10−20 and

4.4×10−19, respectively) (Table 1). In contrast, the glioma risk allele at rs6010620 in RTEL1

was modestly associated with shorter LTL (P=1.1×10−3) (Table 1). Other known glioma risk

loci were not associated with LTL (Supplementary Table 2). The lack of association with

LTL at these other loci supports the hypothesis that multiple mechanisms contribute to

glioma risk, of which telomere dynamics may be one15. The presence of genes causally

implicated in carcinogenesis at glioma risk loci not associated with LTL supports this (e.g.

EGFR, CDKN2B).

Next we comprehensively compared the direction and statistical significance of the

associations in the TERC, TERT and RTEL1 regions with both high-grade glioma risk and

mean LTL. For all SNPs, the glioma risk allele was set as the reference allele. We then

evaluated whether the glioma risk allele was associated with longer or shorter LTL. Alleles

in the TERC and TERT regions were consistently associated with both increased glioma risk

and longer LTL (Figures 2a and 2b). In contrast, some glioma risk alleles near RTEL1 were

associated with longer LTL and others with shorter LTL (Figure 2c). The LTL associations

near RTEL1 have substantially more modest p-values than those observed near the

telomerase components TERC and TERT.

The glioma and LTL association peaks on 3q26.2, containing TERC and five additional

genes, span a ~200kb region with low recombination rates and strong linkage disequilibrium

(LD) (Supplementary Figure 4a). Although the association peak for LTL is located ~85kb

centromeric to the glioma association peak, every 3q26.2 SNP which was associated with

glioma at P<0.01 (N=54 SNPs) was also associated with increased LTL at P<1.0×10−5.

Similarly, of 67 SNPs on 3q26.2 associated with increased LTL at P<1.0×10−10, 65 (97%)

were associated with increased glioma risk at P<0.05. This included the top LTL

association, rs10936599 (PGlioma=7.6×10−3; OR=1.17). Although distinct causal alleles may

underlie the LTL and glioma association signals near TERC, such alleles likely reside on the

same extended haplotype.

The odds ratios for high-grade glioma risk appear relatively uniform throughout the 3q26.2

region (Supplementary Figure 5), similar to observations of this region’s relationship to

colorectal cancer16. Conditional analyses suggest that multiple 3q26.2 SNPs may influence

glioma risk, as controlling for either the lead glioma SNP (rs1920116) or the lead LTL SNP

(rs10936599) did not fully attenuate the association between glioma risk and nearby alleles
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(Supplementary Figure 6). Differences in the statistical significance of the LTL and glioma

risk associations may also relate to differences in sample size and analytic technique (i.e.

linear regression for LTL vs. logistic regression for glioma), or to the tissue type under study

(i.e. leukocytes for LTL vs. astrocytes for glioma). Variants regulating TERC expression,

and possible downstream effects on telomere length, may differ across tissues due to

differential transcription factor expression or other tissue-divergent regulatory mechanisms.

A full analysis of the potential functional consequences of 3q26.2 SNPs appears in

Supplementary Table 3 and indicates that rs1920116 may have long-range effects on gene

expression.

In the TERT region on 5p15.33, with high recombination rates and low LD (Supplementary

Figure 4b), rs2736100 is the most statistically significant association for both glioma risk

and LTL. A previous study found multiple independent TERT SNPs that influenced LTL

and breast cancer risk17. Our data suggest that, in the case of glioma, TERT variants are

simultaneously associated with increased glioma risk and longer LTL.

The glioma and LTL association peaks near RTEL1 display substantially less overlap than

those near TERC and TERT. Indeed, the RTEL1 SNPs most significantly associated with

glioma risk are not in LD with the top LTL SNPs, suggesting that different causal alleles

influence the two phenotypes (Supplementary Figure 4c). This is particularly intriguing

because the RTEL1 protein interacts with proliferating cell nuclear antigen (PCNA), a

processivity factor for DNA polymerase18. The RTEL1-PCNA interaction is essential for

replication fork stability and suppression of telomere fragility, but in the absence of this

interaction, RTEL1 can still disassemble telomere loops and inhibit telomere shortening18.

Thus, genetic variation that limits the RTEL1-PCNA interaction might influence glioma risk

without directly influencing telomere length. The PCNA interaction motif (PIP box) is

encoded by the 34th exon of RTEL1, near our most significant glioma associations.

Because telomere maintenance is a universal requirement of oncogenic progression and

telomere length displays substantial interindividual variability19,20, telomere length is a

promising epidemiologic risk factor for cancer. Mean telomere length decreases with age

(declining 20–40 bp per year) and has been proposed as a biomarker of health23. Although

shorter telomere length is causally linked to increased coronary artery disease1,24, both

longer and shorter telomere length have been associated with increased cancer risk25-27.

Although data connecting telomere length in astrocytes with LTL is lacking, telomere length

in individuals is highly correlated across tissues28,29. Recent research indicates that

environmental insults alter telomere length and that the magnitude of these changes is linked

to telomere length at baseline30. This correlation suggests that stress-induced telomere

extension occurs through the same pathway as canonical telomere extension. Therefore,

heritable variation may influence telomere dynamics in both normal and pre-malignant cells.

Another SNP near TERC is significantly associated with colorectal cancer risk (lead SNP:

rs10936599)31. The colorectal cancer risk allele is also associated with increased glioma risk

(OR=1.17, P=7.6×10−3) and longer telomeres (P=2.5×10−31) in our data. Idiopathic

pulmonary fibrosis risk is significantly associated with SNPs near TERC (rs6793295) and
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TERT (rs2736100)32. For both SNPs, the pulmonary fibrosis risk allele is associated with

significantly shorter telomere length (P=1.1×10−28 and 4.4×10−19, respectively) and with

decreased glioma risk (P=2.1×10−3 and 2.9×10−13) in our data. These observations suggest

that both longer and shorter telomere length may be pathogenic, depending on the disease

under consideration.

We identify a novel high-grade glioma susceptibility locus near TERC, and demonstrate that

the glioma risk alleles near TERC and TERT may also influence telomere length. Top glioma

risk SNPs near TERC, TERT and RTEL1 all have risk allele frequencies greater than 50%

among our control sample. Considering that increased telomere length protects against

cardiovascular disease33, but may concurrently increase risk of some cancers, these alleles

may be simultaneously influenced by both positive and negative selective pressures. This

balancing selection underscores the complexity of telomere-based pathways of disease

susceptibility.

METHODS

Ethics statement

Glioma studies were approved by the University of California, San Francisco Committee on

Human Research and The Mayo Clinic Office for Human Research Protection. Informed

consent was obtained from all study participants. The genome-wide meta-analysis of mean

leukocyte telomere length (LTL) obtained approval by local ethics committees as previously

outlined1.

Study design

The overall study design is summarized in Supplementary Figure 1. The study had four

stages. Stage 1 and Stage 2 were part of a combined discovery phase, while Stage 3 involved

replication and Stage 4 examined function of top-loci in an independent dataset with LTL

measurements.

Stage 1 was a genome-wide association study of high-grade glioma cases (N=690) and

controls (N=3992), results of which were first published in 20096. This GWAS analyzed

UCSF Adult Glioma Study cases (N=620) and controls (N=602), TCGA cases genotyped on

Illumina arrays (N=70), and Illumina iControls (N=3390). Results of this pooled analysis

were used to generate a list of regions which had not undergone attempted replication in the

2009 publication (p > 1.0×10−6) but which showed suggestive associations (p<1×10−4). This

yielded thirty independent loci containing at least 1 SNP with a p-value between 1.0×10−4

and 1.0×10−6 for additional study. Imputation to 1000 Genomes was performed for 500kb

regions, centered on the most statistically significant SNP from each of these thirty regions

(Supplementary Table 4). Eigenstrat-adjusted case-control associations were calculated for

genotyped and imputed SNPs.

Stage 2 analyzed Affymetrix 6.0 SNP array data from new TCGA glioblastoma cases

(N=323) and Wellcome Trust Case-Control Consortium controls (N=2603). Imputation to

1000 Genomes was performed for the thirty 500kb regions identified in Stage 1, and case-

control comparisons were made for genotyped and imputed SNPs. Eigenstrat-adjusted case-
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control association results from Stage 1 and Stage 2 were combined using meta-analysis to

identify SNPs meeting the original a priori threshold for attempted replication

(p<1.0×10−6).

Stage 3 attempted replication of the single SNP from Stage 2 that had a p-value less than

1.0×10−6 (rs1920116 near TERC, p=8.7×10−7). Targeted genotyping of this SNP using

either TaqMan or Sequenom assays was performed in an additional 328 Mayo Clinic

glioblastoma cases, 303 UCSF glioblastoma cases, 766 Mayo Clinic controls and 375 UCSF

controls. SNP data for these samples were also available for previously established high-

grade glioma risk loci in TERT and RTEL1 which emerged from Stage 1 and were first

published in 20096.

Stage 4 combined data from a GWAS meta-analysis of mean LTL (N=37,684), published in

20131, with our high-grade glioma association data to investigate the direction and statistical

significance of associations between glioma risk alleles and mean LTL.

Study population

Characteristics of cases and controls from UCSF, The Mayo Clinic, Illumina, The TCGA

and the Wellcome Trust Case-Control Consortium are summarized in Supplementary Table

1. All individuals were of European ancestry and were older than 18 years of age. UCSF

cases and controls were taken from the San Francisco Bay Area Adult Glioma Study (AGS).

A total of 923 high-grade glioma cases and 977 controls from the UCSF AGS were used in

this study (Stages 1 and 3). A total of 328 glioblastoma cases and 766 controls from the

Mayo Clinic were used in this study (Stage 3). A total of 37,684 individuals of European

descent, aged >18 years, were included in the genome-wide analyses of mean LTL (Stage

4).

Subject recruitment

All UCSF AGS cases were adults (>18 years of age) with newly diagnosed histologically

confirmed glioma (International Classification of Disease for Oncology, morphology codes

9380-9481). Population-based cases from six San Francisco Bay Area counties were

ascertained using the Cancer Prevention Institute of California’s early case ascertainment

system from May 1997 to August 1999 (Series 2), from November 2001 to September 2005

(Series 3), and from September 2006 to September 2009 (Series 4). Clinic-based cases

diagnosed between 2002-2006 (Series 3), 2006-2010 (Series 4), and 2009-2012 (Series 5) of

the same histologies were recruited from the UCSF Neuro-oncology Clinic, regardless of

place of residence. From 1991-2010, population-based controls from the same residential

area as the population-based cases were identified using random digit dialing and were

frequency matched to population-based cases on age, gender and ethnicity. After 2010, all

controls were selected from the UCSF general medicine phlebotomy clinic. Clinic-based

controls were matched to clinic-based glioma cases on age, gender and ethnicity. Tumor

specimens and pathology reports were reviewed by UCSF neuropathologists. Consenting

participants provided blood, buccal and/or saliva specimens and information during an in-

person or telephone interview.
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The Mayo Clinic cases include individuals with newly diagnosed glioblastoma between

2005 and 2012. Cases were identified within 24 hours of diagnosis, except for those who

had their initial diagnosis elsewhere, followed by verification at the Mayo Clinic. Pathologic

diagnosis was confirmed by review of the primary surgical material for all cases by two

Mayo Clinic neuropathologists. The control group consisted of consented individuals who

had a general medical exam at the Mayo Clinic. Matching variables were sex, date of birth

(within 2.5 years), self-identified race (Hispanic white, non-Hispanic white, American

Indian, African American, Asian, Pacific Islander, Other) and residence. Geographic region

of residence was matched in three zones based on the distance to the Mayo Clinic Rochester:

Olmsted County; the rest of Minnesota, Wisconsin, Iowa, North Dakota and South Dakota;

and the rest of the United States and Canada. Individuals under age 18 and those with a

history of a brain tumor were excluded.

A total of 37,684 individuals from 15 cohorts were used in the GWAS meta-analysis of

mean LTL. Samples were collected and analyzed by the ENCODE Telomere Consortium,

comprised of European and Australian collaborating institutions. These institutions are

distinct from those collecting the glioma case-control samples. Details of the ENCODE

Telomere Consortium cohorts and subject recruitment procedures can be found in

Supplementary Table 1 of Codd et al., 20131.

Measurement of telomere length

Telomere measurements were performed on blood-derived DNA. Assays were conducted at

one of four centralized laboratories to ensure data harmonization. Mean LTL was measured

using a quantitative PCR–based technique in all samples34,35. This method expresses

telomere length as a ratio (T/S) of telomere repeat length (T) to copy number of a single

copy gene (S), in each sample. To standardize across plates, either a calibrator sample or a

standard curve was used for quantification. LTL measurements were made in five separate

laboratories. Details for the methods used are provided elsewhere1. The majority of the

samples (67% of the total) were run in a single laboratory with mean inter-run coefficients

of variation for LTL measurements in individual cohorts ranging between 2.7% and 3.9%.

Ranges in T/S ratios were found to vary between cohorts measured in different laboratories,

largely owing to differences in the calibrator or standard DNA used. Standardized LTL in

each cohort was generated using a Z-transformation approach.

Sample preparation and genotyping

Stage 1—For UCSF AGS discovery samples used in Stage 1 of the study, DNA was

isolated from whole blood using Gentra Puregene DNA isolation kit (Qiagen) and quantified

using Picogreen reagent (Invitrogen). Genotyping was conducted by deCODE Genetics.

Samples were randomized before plating on specimen plates provided by deCODE

Genetics. The genotyping assay panel used was Illumina’s HumanCNV370-Duo BeadChip.

In addition to randomization of samples and the quality control measures provided by

deCODE Genetics, we included two duplicate samples per plate and one CEPH24 trio

(parents and child) per plate. A total of 51 duplicate samples were plated with average

concordance >99%. DNA was re-extracted for any samples with call rates <98% and

genotyped again. Samples with call rates <98% were excluded from analysis (N=1), as were
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samples with mismatched reported and genotyped sex (N=1). Although all subjects were of

self-reported European-ancestry, one subject was removed because of not clustering with

those of European ancestry in Eigenstrat analyses. The assay panel contained a total of

353,202 SNP probes, of which 326,506 biallelic SNPs had call rates >98% and Hardy-

Weinberg equilibrium p-values >0.0001 (among controls), and were included in analyses.

We downloaded HumanHap550 platform genotyping data from blood specimen DNA for 72

glioblastoma cases from The Cancer Genome Atlas (TCGA) for use in Stage 1. Although 72

were identified as white, our analyses showed that one had non-European ancestry and

another appeared to duplicate an AGS case, leaving 70 TCGA cases in Phase 1 analyses.

We assembled an independent control genotype dataset of 3,390 non-redundant European-

ancestry controls from the Illumina iControlDB. The subjects are anonymous, with

information only on age, sex and ethnicity. We checked for evidence of non-European

ancestry and sample duplicates or related subjects (IBS > 1.6) among AGS samples, TCGA

cases and Illumina iControls by performing multidimensional scaling (MDS) analysis on 20

bootstrap samples of 1,000 random autosomal biallelic SNPs. Following these quality

assessment measures, we obtained a total of 3,390 European-ancestry Illumina iControls

from three different panels with up to 306,154 autosomal SNPs overlapping the

HumanHap370duo panel used for the AGS subjects. The iControls samples were genotyped

on the Illumina HumanHap300 (n = 319 subjects), HumanHap550v1 (n = 1,519) and

HumanHap550v3 (n = 1,552).

Stage 2—Genome-wide SNP data for 323 TCGA glioblastoma patients, not included in

Stage 1 analyses, were downloaded from TCGA for use in Stage 2 analyses12. These data

were generated following publication of the original UCSF AGS genome-wide association

study (2009)6 and do not overlap with samples included in those analyses. Genotyping was

performed using blood-derived DNA specimens, assayed on the Affymetrix 6.0 genotyping

array. Control genotype data for 2603 European-ancestry control samples genotyped on the

Affymetrix 6.0 were downloaded from the Wellcome Trust Case-Control Consortium13. We

excluded subjects showing evidence of non-European ancestry, as well as duplicate samples

and related subjects (IBS > 1.6) among the TCGA cases and WTCCC. We also used

genome-wide SNP data to ensure there was no overlap between TCGA cases included in

Stage 2 and those UCSF and TCGA cases included in Stage 1 analyses. SNPs with call rates

<0.98 or HWE p-value <0.001 (in controls) were excluded to remove poorly genotyped

SNPs.

Stage 3—DNAs for cases and controls were isolated from whole blood or saliva samples.

UCSF samples were whole genome amplified as previously described36. UCSF and Mayo

samples were genotyped using a TaqMan assay from Applied Biosystems (ABI:

C_26010927_10). Cases and controls were randomized on 96-well plates, containing

HapMap trios and 5 duplicate samples per plate. All trio genotypes displayed Mendelian

consistency and duplicates showed genotype concordance. Genotypes for a small subset of

UCSF samples were generated on a custom Sequnom panel (n=25 cases). All cluster plots

were visually inspected. To exclude poorly genotyped SNPs, any SNP with a Hardy-

Weinberg Equilibrium (HWE) P-value < 0.001 in controls, stratified by site, was removed
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from further analyses. The TERT and RTEL1 genotypes for samples in Stage 3 were

generated on an Illumina GoldenGate custom genotyping array, as previously described11.

No SNP failed HWE checks in Stage 3.

Stage 4—All discovery cohorts for the genome-wide meta-analysis of leukocyte telomere

length had genotype information generated on a standard genotyping platform from Illumina

or Affymetrix, and include imputed genotypes based on HapMapII CEU reference data.

Detailed information about individual genotyping platforms is provided elsewhere1. All

study-specific files underwent extensive quality control procedures before meta-analysis. All

files were checked for completeness. Allele frequencies were checked for compliance with

HapMap. In addition to study-specific quality control filters, SNP results of a study were

included in the meta-analysis only if the imputation quality score was >0.5 and if the minor

allele frequency was >1%. Only SNPs that were available in >50% of the total sample size

over all studies were analyzed, resulting in a total of 2,362,330 SNPs in the meta-analysis.

Statistical analyses

Stage 1—Genome-wide SNP data for high-grade glioma cases and controls were analyzed

using logistic regression, adjusted for the first two ancestry-informative principal

components, using R and Eigenstrat. Single SNP association results were computed

assuming an allelic additive model for 0, 1 or 2 copies of the minor allele (equivalent to a

Cochran-Armitage test for trend).

Imputation was performed for 500kb regions centered on thirty top SNPs using the Impute2

v2.1.2 software and its standard Markov chain Monte Carlo algorithm and default settings

for targeted imputation37. All 1,000 Genomes Phase I interim release haplotypes were

provided as the imputation reference panel38. SNPs with imputation quality (info) scores

less than 0.80 or posterior probabilities less than 0.90 were excluded to remove poorly

imputed SNPs. Any SNP with a minor allele frequency <1% in case subjects was excluded

from association tests. Association statistics for imputed and directly genotyped SNPs were

calculated using logistic regression in SNPTESTv2, using an allelic additive model39. A

missing-data likelihood score-test was applied to the imputed variants to produce standard

errors which account for the additional uncertainty inherent in the analysis of imputed

genotypes. The effect of individual SNPs on glioma risk was calculated while adjusting for

the first 2 principal components from Eigenstrat40.

Stage 2—As in Stage 1, thirty 500kb regions were imputed using the Impute2 v2.1.2

software and the 1,000 Genomes Phase I reference panel. SNPs with imputation quality

(info) scores less than 0.80 or posterior probabilities less than 0.90 were excluded to remove

poorly imputed SNPs. Association statistics for imputed and directly genotyped SNPs were

calculated using logistic regression in SNPTEST v2, using an allelic additive model. SNP

association statistics were adjusted for the first two principal components, generated by

Eigenstrat. SNP association statistics from Stage 1 and Stage 2 analyses were combined

using the program META41. As a measure for between study heterogeneity, I2 was

calculated42. For SNPs with I2 ≤ 40%, fixed-effects models were applied; random-effects

models were applied for SNPs with I2 > 40%.
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Stage 3—Any SNP with a p-value in the Stage 2 meta-analysis of thirty regions surpassing

our a priori significance threshold of 1×10−6 was selected for replication. For the single

SNP that met this threshold, replication was attempted in 328 glioblastoma cases and 766

controls from The Mayo Clinic and 303 cases and 375 controls from UCSF. UCSF cases

included in Stage 3 were not included in the original Stage 1 GWAS due to date of

recruitment or insufficient DNA quantity. Case-control associations were evaluated using

logistic regression, assuming an allelic additive model. Associations were calculated

separately for each site (Mayo and UCSF) and then combined using fixed effects meta-

analysis with the META software41. A summary meta-analysis of all high-grade glioma

cases and controls was calculated by combining results from Stage 1, Stage 2 and the two

replication series from Stage 3 using fixed effects meta-analysis with the META software.

SNPs showing association with high-grade glioma risk with P < 5.0×10−8, corresponding to

a Bonferroni correction of one million independent tests, were considered to be have

achieved genome-wide statistical significance by current convention43.

Stage 4—In the GWAS of LTL, SNP array data from each of fifteen cohorts underwent

genome-wide SNP imputation using HapMapII CEU as the reference, as previously

described1. Within each cohort, SNP associations with LTL were analyzed by linear

regression assuming additive effects, with adjustment for age, sex and study-specific

covariates where appropriate (e.g. smoking). This ensured that all regression analyses were

done uniformly, but permitted studies to adjust for additional relevant site-specific

covariates (e.g. ancestry-related principal components). Standard errors of each study were

corrected using study-specific lambda estimates for the genomic control procedure. Meta-

analysis of all individual study associations was conducted using inverse variance weighting

in STATA. As a measure of between study heterogeneity, I2 was calculated42. For SNPs

with I2 ≤ 40%, fixed-effects models were applied; random-effects models were applied for

SNPs with I2 > 40%. The overall inflation factor lambda of the meta-analyzed results was

1.007, and results were further corrected for this using the genomic control procedure.

The glioma and LTL SNP datasets were harmonized by mapping all positions to Build37/

hg19 and setting the allele which increased glioma risk as the reference allele in association

tests of both traits. As a result, all odds ratios for associations between SNPs and high-grade

glioma are >1.0. Similarly, associations between SNPs and LTL are calculated with the

glioma risk allele as the reference. A positive Beta value from the linear regression of mean

LTL indicates that the glioma risk allele is associated with increased telomere length.

Likewise, a negative Beta value from the linear regression of mean LTL indicates that the

glioma risk allele is associated with decreased telomere length. Glioma risk loci showing

association with LTL at a p-value <6.25×10−3 (i.e. 0.05/8 loci) were considered to be

statistically significant.

Testing the independence of glioma risk loci and for the presence of interaction

We tested for evidence of gene-gene interaction for top hit SNPs in the telomere-associated

genes TERC, TERT and RTEL1. The associations of rs1920116, rs2736100 and rs6010620

with high-grade glioma risk were modeled jointly to assess whether the observed

associations were independent or possibly synergistic in nature. First, all three SNPs were
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included in a single logistic regression model to determine if controlling for glioma risk

variants in related genes attenuated any of the SNP associations. Inclusion of an allelic

additive interaction term in the model (rs1920116*rs2736100, rs1920116*rs6010620,

rs2736100*rs6010620) was performed to test for the presence of any significant effect

modification (p<0.05). Combining the risk allele dosage into a single ordinal variable

representing the total number of risk SNPs in a telomere-associated gene (range 0-6) was

done to determine if the alleles contributed to glioma risk in a monotonic increasing fashion

(Supplementary Figure 2). To test whether age modified the effect of these SNPs on glioma

risk, an allelic additive interaction term was included in the model (e.g. rs1920116*age).

Additionally, odds ratios for glioma were calculated in case-control analyses stratified into

10-year intervals of age, as previously described (Supplementary Figure 3)14.

Genomic annotation of SNPs

Fifty-four SNPs on 3q26.2 that had p-values <0.01 in the glioma discovery dataset were

annotated for their potential to regulate nearby genes. We used HaploReg44 and

RegulomeDB45 to examine whether any of these SNPs are located in putative promoters,

enhancers, DNase hypersensitivity sites or transcription factor binding sites. Sequence

conservation was assessed using Genomic Evolutionary Rate Profiling (GERP)46.

Associations between SNP genotype and mRNA expression levels were assessed with

Spearman’s rho, analyzed using the Stranger, et al. (2012) dataset47 and tools available in

Genevar 3.3.048. Analyses were restricted to Caucasian lymphoblastoid samples, and a p-

value threshold of 0.05 was used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. SNP association plots for high-grade glioma risk and mean leukocyte telomere length
at 3q26.2 (TERC), 5p15.33 (TERT), and 20q13.33 (RTEL1)
Telomere associations (grey squares) are from the telomere length genome-wide association

meta-analysis (N=37684). Glioma associations (red circles) are from the genome-wide

discovery meta-analysis, combining data from the UCSF Adult Glioma Study, The Cancer

Genome Atlas, and the Wellcome Trust Case-Control Consortium (N=1013 cases and 6595

controls). Red diamonds are from the combined glioma discovery and UCSF and Mayo

Clinic replication analyses (1644 cases, 7736 controls).
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Figure 2. SNP association plots indicating the –log10P for association with high-grade glioma
risk (y-axis) and mean leukocyte telomere length (x-axis)
Colors correspond to whether the glioma risk allele is associated with longer (blue) or

shorter (orange) leukocyte telomere length.
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Table 2

Association of SNPs near TERC, TERT, and RTEL1 with mean leukocyte telomere length in the UK genome-

wide association meta-analysis.

SNP Chr. Position Alleleb Gene Number AF Beta (SE)b P

rs1920116 3 169579971 G TERC 37,489 0.71 0.0733 (0.0080) 5.5×10−20

rs2736100 5 1286516 C TERT 25,842 0.49 0.0783 (0.0087) 4.4×10−19

rs6010620 20 62309839 G RTEL1 37,607 0.77 −0.0278 (0.0085) 1.1×10−3

a
Allele listed is the risk allele for high-grade glioma.

b
Beta estimates are from regressing mean leukocyte telomere length on each additional copy of the glioma risk allele. Negative Beta values

indicate that the glioma risk allele is associated with shorter leukocyte telomere length, while positive Beta values indicate that the glioma risk
allele is associated with longer leukocyte telomere length.

AF: allele frequency
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