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Abstract
Although cancer and aging have been studied as independent diseases, mounting evidence suggest
that cancer is an aging-associated disease and that cancer and aging share many molecular
pathways. In particular, recent studies validated telomerase activation as a potential therapeutic
target for age-related diseases, and at the same time, abnormal telomerase expression and
telomerase mutations have been associated with many different types of human tumors. Here, we
revisit the connection of telomerase to cancer and aging in light of recent findings supporting a
role for telomerase not only in telomere elongation, but also in metabolic fitness and Wnt
activation. Understanding the physiological impact of telomerase regulation is fundamental
considering the therapeutic strategies that are being developed involving telomerase modulation.
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Telomerase defects may lead to aging and cancer
Telomeres are repetitive DNA sequences at chromosome ends that are bound by a protective
protein complex known as shelterin, which prevents them from eliciting a DNA damage
response (DDR) 1, 2. Seminal studies have shown that telomeres shorten with each cell
division due in part to the end-replication problem, an inability of the DNA replication
machinery to fully replicate DNA ends 3-6. This is paralleled by the silencing of telomerase,
a reverse-transcriptase responsible for de novo telomere extension in most adult tissues.
Some adult cell types, such as adult stem cells, have the ability to activate telomerase,
particularly in the transient amplifying compartments 6. Nevertheless, telomerase expression
in stem cells is not sufficient to prevent progressive telomere shortening associated with
increasing age 7.

The first connection linking telomere length to the aging process came from the observation
that human primary fibroblasts had shorter telomeres with increasing donor age and that
when telomeres reached a critically short length they resulted in loss of proliferative ability,
a terminal condition for cells known as replicative-senescence 8. It is now thought that
senescence, either triggered by telomere shortening or by other non-telomere related
pathways, is a key cellular outcome which may contribute to the aging process, as well as
act as a barrier for tumor progression 9. In particular, telomere shortening and increased
numbers of senescent cells have been found to occur in both proliferative and non-
proliferative tissues as they age 10-12. The importance of cellular senescence in the aging
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process was recently demonstrated by depletion of senescent cells in the context of an adult
organism, the BubR1 progeroid mouse model, which rescued tissue dysfunction and
increased organismal health-span (of note, BubR1 mice present an unusually high level of
senescent cells and so may not be completely reflective of the natural aging process) 13. In a
similar manner, telomerase activation strategies have been recently shown to prevent
telomere shortening associated with aging, delay organismal aging, and increase both
healthspan and longevity 14, 15.

The anti-aging role of telomerase has been demonstrated to be largely mediated by its
canonical role in elongating telomeres, which prevents the accumulation of critically short
telomeres and loss of tissue homeostasis 14, 15. In particular, telomere shortening in the
context of adult stem cell compartments, has been previously demonstrated to cause severe
impairment of stem cell mobilization and a subsequent defect in the ability to regenerate
tissues 16, a situation that is similar to that of the so-called human telomere syndromes 17, 18.
This is because short/unprotected chromosome ends are recognized as persistent/non-
repairable DNA breaks triggering persistent DDR 18-20, as well as cellular senescence or
apoptosis mediated by the p53 pathway.

Short telomeres, and subsequent DDR activation, could occur both in cancer and aging (Fig.
1). On one hand, increased abundance of short telomeres correlates with higher genomic
instability and decreased longevity in various organisms, including mice, zebrafish, and
yeast 21-24. In particular, mice deficient for telomerase or for telomere binding proteins are
characterized by accelerated age-related defects 14, 16, 18, 19, 21, 22, 25-32 with the load of
telomere dysfunction correlating with the lifespan of mice 33. In humans, short telomeres are
considered good indicators of an individual’s health status and correlate with both genetic
and environmental factors 18, 34-37. Although recent findings strongly support the idea that
short telomeres drive several age-related diseases 38 we cannot exclude the possibility that in
some situations short telomeres may be a consequence of the disease itself.

Although tumors may arise from cells with short telomeres and chromosomal instability,
telomerase activation and telomere maintenance are requisites for the progression of most
human tumor types 39-49. Further linking TERT (telomerase reverse transcriptase, the human
telomerase) to cancer are GWAS results showing correlations between particular SNP
variants on the 5p15.33 bin (which includes TERT) and a higher cancer risk 21, 50-58. In
particular, genetic variants in telomerase-associated genes and in the TERT-CLPTM1L
locus are associated with different cancer types 50, 59-65. Although the mechanism by which
these variants interfere with telomerase levels/activity is mostly unknown, there are
indications that the variants may lead to an increase in the gradual shortening of telomeres
over time 52, 59, but these results still need to be confirmed 66. On the other hand, two recent
studies linked melanoma risk to promoter mutations in the TERT gene associated with
increased transcriptional activity of the TERT promoter 67, 68, demonstrating the importance
of tightly controlled telomerase expression.

Like cancer, aging encompasses a spectrum of cellular and molecular changes, but in the
case of aging, these eventually result in loss of regenerative capacity and tissue dysfunction,
either through loss of functional cells or through the accumulation of surviving aberrantly
damaged cells, which could result in the appearance of neoplasias. In this review we focus
on aging associated with telomere shortening, and on how telomerase could be an important
therapeutic target for this process. To support the dual role of telomerase in aging and cancer
we highlight recent studies that have demonstrated that expression of telomerase in aged
organisms is a valuable tool to counteract tissue degeneration through the protection of short
telomeres 69, envisioning that controlled telomerase activation under particular settings may
delay age-related tumorigenesis.
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Telomerase as a key factor that regulates aging
Evolution has developed different barriers against cancer amongst different species. These
barriers are related to the ability to cope with DNA damage and the prevention of the
accumulation of damaged cells and tissues. Irrespective of its source, damage acts as the
basis for the development of dysfunctional tissues, which are a hallmark of age decline as
well as the basis for cancer 69, 70.

Patients carrying mutations in genes crucial for telomere maintenance show accelerated
aging phenotypes. Such is the case for patients carrying mutations in TERT, TERC or other
telomere maintenance genes, which lead to an accelerated aging syndrome known as
dyskeratosis congenita (DC) 71. DC encompasses a spectrum of pathologies including
abnormal skin pigmentation, nail dystrophy, leukoplakia and pancytopenia 72. In patients
carrying mutations in TERT and TERC, the severity of pathologies correlates with the
abundance of short telomeres, so the onset of disease is anticipated with increasing
generations (a phenomenon known as “genetic anticipation”) 73. Interestingly, human
telomere syndromes closely recapitulate the phenotypes of previously generated mouse
models for telomerase deficiency. In particular, mice genetically deficient for telomerase or
some of the telomere-binding proteins present a plethora of pathologies generally
characterized by the loss of tissue regeneration and organ function 32, 74. In addition to the
defects in the highly proliferative tissues such as the bone marrow or the skin, mice and
humans with telomerase deficiency also present pathologies in more quiescent tissues, such
as cardiomyopathy, insulin resistance, and lung and liver fibrosis 75, 76. To date it remains
unknown how telomerase deficiency also leads to short telomeres in tissues with a lower
proliferative potential 77, 78. In this regard, mitochondrial dysfunction has been recently
reported in quiescent tissues (such as the heart and liver) in the context of telomerase
deficiency in mice. Several reports described that mt-TERT (TERT that localizes at
mitochondria) improves mitochondrial function and protects from oxidative stress 79-81. In
particular, telomerase deficient mice that have been bred for several generations and have an
increased abundance of short telomeres present a marked mitochondrial compromise
triggered by the suppression of the peroxisome proliferator-activated receptor gamma,
coactivator 1 alpha and beta (PGC1α and PGC1β) networks which control, amongst other
processes, mitochondrial function and oxidative defense 82. Interestingly, this connection
between telomere dysfunction and mitochondrial dysfunction is mediated by p53, a common
checkpoint to telomere syndromes 83. Additionally, mitochondrial dysfunction in quiescent
tissues of telomerase-deficient mice could be initiated by pathways independent of p53 83.
Of note, mitochondrial defects have been described in the first generation of TERT KO mice
(G1) 82, when telomere length is still conserved, demonstrating that mitochondrial
dysfunction could, at least partially, precede or parallel telomere shortening. It has also been
recently demonstrated that mitochondrial dysfunction is associated with physiological
mouse aging, and reverted by telomerase activation 15, 82.

With the aim of dissecting the role of telomerase activity and telomere length in cancer and
aging, various mouse models for telomerase over-expression have been generated (table 1).
Transgenic mice that carry the mouse TERT gene under the control of the keratin 5 promoter
(K5-mTERT referred hereafter as TgTERT) show increased tissue fitness, however, owing to
an increased incidence of spontaneous tumors, these mice do not show an extended median
lifespan 84. To unmask the potential anti-aging role of telomerase, TgTERT mice were
crossed with mice carrying extra copies of the tumor suppressors p53, p16 and Arf (Sp16/
SArf/Sp53 mice), which were previously reported to be cancer resistant 14. In this context,
TgTERT/Sp16/SArf/Sp53 showed improved health span and a 40% increase in median
longevity compared to wild-type controls, or 26% comparing with the long-lived and
healthy Sp16/SArf/Sp53 mice, demonstrating the anti-aging activity of telomerase. A similar
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scenario occurred when telomerase overexpression was combined with other cancer-
protective conditions, such as by subjecting mice to caloric restriction (CR). In this setting,
telomerase overexpression synergized with CR to significantly extend mouse lifespan 85.
This synergy between telomerase and tumor resistance in extending organismal longevity
seems to be a naturally occurring strategy, such as in the case of the mole rat or other small
animals that are positive for telomerase, present higher tumor suppressor barriers 86, 87 and
have an unusually increased longevity for their species. Although this synergy could be a
strategy in some situations, there are exceptions (such as the American beaver, another long-
lived rodent, which has no detectable telomerase activity 88), highlighting the complexity of
aging.

More recently, two independent studies demonstrated that telomerase activation either in a
mouse model of accelerated-aging (late generation TERT-ER mouse model) or in natural-
aged mice (1 and 2 year old wild-type mice) is sufficient to delay aging without increasing
cancer incidence 15, 89. These studies support the idea that telomere shortening is one of the
molecular mechanisms of cellular aging and lifespan modulation, and more notably, they
demonstrate that telomerase reactivation in adult (or aged) organisms has a positive impact
in delaying aging, which can be separated from its role in cancer when its aberrantly
expressed. Future work should focus on understanding the molecular mechanisms by which
telomerase delays aging and disease in different organs and tissues. Below we discuss novel
pathways and telomerase partners which could be also involved in these processes.

Telomerase regulation in cancer
The role of telomerase in cancer has been extensively studied. Almost all human cancers
present activation of telomerase as a hallmark, most likely as a mechanism to allow
unlimited cell proliferation of tumor cells 90. Although telomerase activation can be an early
event in cancer, it is not necessary for cancer initiation 91. However, telomerase can
stimulate tumor progression by ensuring maintenance of telomeres above a critically short
length, thus preventing induction of cellular senescence or apoptosis. Several mechanisms
have been reported to activate telomerase in cancer, such as different oncogenes including
Myc and Wnt 92-94 which act as transcriptional regulators of telomerase. Additional
telomerase activation mechanisms involving alternative splicing or epigenetic alterations
have also been described 95. Recently, mutations increasing transcriptional activity of the
TERT promoter from generation of de novo consensus binding motifs for E-twenty-six
(ETS) transcription factors have been described in human melanomas 67, 68. In addition to
the canonical role of telomerase in maintaining telomeres above a critical length, telomerase
has also been proposed to regulate other pathways, which could have an impact on cancer
growth, such as regulation of Wnt targets and metabolism (82, 96). Getting rid of telomerase
can also be problematic; the lack of telomerase could lead to increased chromosomal
instability, which in turn could be at the basis for cancer initiation when tumor suppressor
barriers are bypassed 97. Indeed, recent evidence demonstrated that short telomeres alone
could lead to genomic instability and cancer 98. Thus, the current view is that telomerase
deficiency may contribute to the early steps of cancer development by fueling chromosomal
instability, while subsequent activation of telomerase may be necessary to allow tumor
growth and tumor progression towards more malignant states 99.

Loss of function and gain of function mouse models for telomerase have been instrumental
in understanding the role of telomerase in cancer. On one hand, telomerase deficient mice
(mTR−/−) are resistant to both induced and spontaneous tumorigenesis 100, except when
telomerase deficient mice were crossed with p53+/− or p53−/− 101, 102. In this scenario a
switch to epithelial carcinogenesis was observed, consistent with the role of telomere
shortening in the pathophysiology of human cancers 103. Short telomeres could be
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recognized as DNA double strand (dsDNA) breaks, a deleterious DNA aberration that
results in a strong activation of DNA damage repair (DDR) pathways. With an intact DDR
and active checkpoints, cells with dsDNA breaks activate a multitude of signaling cascades
which conclude in p53 and tumor suppressor activation. This cascade of events culminates
in activation of anti-proliferation signals. On the other hand, if tumor suppressors or p53 are
bypassed, a common characteristic of tumors, chromosome fusions and genomic instability
could converge to give rise to cancer. This potential of telomerase to sustain the growth of
tumor cells illustrates the importance of telomerase regulation in adult tissues, and probably
explains why most adult cells silence telomerase expression.

Given the importance of telomerase to sustain cancer growth, telomerase inhibitors were
considered as potential therapies against tumor malignancy. Recent evidence demonstrates,
however, that tumors in which telomerase are lost may well activate different pathways to
overcome this situation, such as alternative telomere lengthening 104-106.

In addition to the canonical role of telomerase in maintaining telomeres, telomerase
overexpression has also been shown to influence the regulation of the Wnt pathway,
although the physiological relevance and mechanism of this regulation is still
debated 15, 93, 94, 96, 107. Nevertheless, given that telomerase activity is aberrantly
overexpressed in some cancers, it is possible that Wnt modulation through higher levels of
telomerase could contribute to the phenotype of some neoplasias 108.

Metabolic defects are an important link between cancer and aging. Interestingly,
metabolically relevant genes that have been shown to be down-regulated in the presence of
short telomeres, such as PGC1α/β, and potentially activated by telomerase re-expression, are
also linked to tumor progression 109, 110. Thus, telomerase activation in tumors may also
alter cellular metabolism. Further work will be required to refine these complex
relationships been telomeres, telomerase and metabolism.

In this regard, transgenic mouse models (e.g., TgTERT mice 14) have shown that
constitutive telomerase over-expression throughout mouse development results in a slightly
higher incidence of cancer. Interestingly, telomerase over-expression to similar levels but in
the context of the adult organism using a gene therapy strategy, showed beneficial effects
delaying aging and extending longevity without increased cancer incidence 15. This could be
related to the fact that the gene-therapy vectors employed (AAV) lead to a loss of TERT
expression in highly proliferating cells or tissues. Another explanation could be that AAV
preferentially targets post-mitotic cells, which are potentially more resistant to cancer
initiation. Alternatively, although the TgTERT mice are the product of single germline
integration, they constitutively express telomerase, independently of the replicative potential
of a tissue, most likely facilitating proliferation and expansion of cells carrying pathogenic
mutations.

Telomerase in stem cells
Stem cells play an important role in the aging process. Stem cell depletion seems to be at the
basis of some diseases and could account for accelerated aging syndromes 111-115.
Moreover, conditions that trigger premature aging, such as telomere shortening, also impair
the ability of stem cells to regenerate tissues 16. Indeed, cells with the longest telomeres are
enriched at adult stem cell niches both in mice and humans, most likely owing to the fact
that these cells have the ability to activate telomerase 7, 116. However, physiological
telomerase activation in stem cell compartments is not sufficient to maintain overall
telomere length with aging, and telomere shortening and DNA damage accumulation is also
a characteristic of aged stem cells 117.
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Tumors are thought to be sustained by a subpopulation of cells with stem cell-like
properties, the so called cancer initiating cells 118, 119. It will be of interest to address
whether these cancer-initiating populations also have the ability to maintain telomeres and
activate telomerase activity.

Therapies based on telomerase: therapeutic value and future perspectives
As discussed above, telomerase activation is a potential therapeutic strategy for the
treatment of age-related diseases 14, 120. In particular, telomerase activation in adult or old
mice by means of a gene therapy strategy was shown to be sufficient to improve metabolic
fitness, neuromuscular capacity, and prevent bone loss, as well as significantly increase both
median and maximum longevity, without increased cancer incidence. The finding that this
strategy of telomerase activation does not lead to cancer could be due to the fact that the
vectors used (AAV)9121 are non-integrative, thus preventing the expansion of clones with
telomerase overexpression 122. Similarly, telomerase expression in an accelerated model of
ageing owing to telomere loss (G4TERT-ER model) rescued several age phenotypes 89, and
although higher genomic instability was detected, it did not lead to an increase in
tumorigenesis. These studies suggest that telomerase expression could be considered a
feasible approach to reverse tissue dysfunction and extend healthy lifespan without
increasing cancer incidence. Dedicated studies should be performed in the future, using mice
at different ages and comparisons at the same age, to assess the safety potential of these
strategies. The actual value of these new therapies will reside in their safety, and a detailed
understanding of the telomeric and non-telomeric roles of telomerase in tissue-specific
healing and cancer will be crucial for considering telomerase for anti-aging therapies.

Whether these promising results could be translated to humans is unknown. It seems
hazardous to use the lack of tumorigenesis in mice as evidence for the safety of pro-
telomerase therapies in humans, as it is known that telomerase is differentially regulated in
these organisms 123, 124. The fact that human longevity is much longer than that of mice
could increase the probability of cancer formation favored by an external telomerase
treatment. The opposite argument can be made, however, in that humans are much more
resistant to cancer than mice and therefore it is less likely that telomerase activation could
lead to cancer in humans compared to mice. Even though the peak of telomerase activity in
humans occurs at early stages, as it does in mice,, humans almost completely lose
telomerase activity from somatic tissues in the adulthood, contrary to mice where telomerase
is found in some somatic tissues 125, 126. As a starting point for translating these findings to
the clinic, telomerase activation is likely to be first tested for treatment of the so-called
telomere syndromes 17. In this scenario the use of tissue specific gene-therapy vectors
expressing telomerase could be envisaged as a potential solution. Based on those outcomes,
it will be easier to assess the feasibility of expanding telomerase activation as a strategy for
combating cancer.

Concluding Remarks
The finding that telomerase plays roles in distinct and complementary circuitries have
helped reveal its function in cancer and aging. Indeed, a change of paradigm seems to be
occurring in telomerase biology, with a switch from viewing telomerase as fueling cancer to
reversing aging. Telomerase expression in a background of high levels of tumor suppressors
or in aged organisms seems to prevent its expected pro-cancer activity and yet it still
functions as an anti-aging factor. Supporting this notion are novel telomerase
activators 120, 127, 128, some of which are commercially available, used as anti-aging
supplements. Although much of the recent work provides only proof-of-principle that
telomerase works for tissue healing, we cannot dismiss that in the future telomerase
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expression could be used as a safe approach for certain telomere-diseases 17 or other
accelerated aging syndromes.
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Figure 1. Short telomeres in aging and cancer.
Major pathways affected by short telomeres and their impact on aging or cancer. DNA
damage and tumor suppressor activity have been shown to impact tissue decline and aging.
When DNA damage checkpoints are bypassed, cells with short telomeres could potentially
progress to cancer. The role of stem cells with short telomeres in cancer and whether short
telomeres could modulate other pathways independently of p53 (such as mitochondrial
dysfunction) remains unknown.
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Table 1
Outcomes of enforced expression of telomerase in mice.

Ref Model / Telomerase activation Cancer Aging Comments

25 • C57Bl/6

• Germline

• K5-mTERT

Stratified epithelia
histologically normal More
tumors after DMBA+TPA
treatment. Skin more sensitive
to esters.

Increased wound-healing High levels of
telomerase
activity in
stratified epithelia
do not alter the
normal epithelium
structure and are
not associated
with changes in
p53, Ras or c-Myc
levels.

129 • FVB/n strain

• Germline

• CAG promoter

Higher incidence of breast
carcinoma in all but 1 female
of founder A. No differences in
males.

n.d. No susceptibility
to spontaneous or
DMBA-induced
papillomas in
mTERT Tg mice.
Enforced mTERT
expression did not
alter the high rate
of spontaneous
tumor formation
in Ink4a/Arf-
deficient mice.

130 • C57Bl/6

• Germline

• K5-mTERT and K5-mTERT/p53−/−

Higher tumor incidence
(spontaneous pre- neoplastic
and neoplastic lesions in
stratified and non- stratified
epithelia)

Lower lifespan in both
k5-mTERT or k5-
mTERT/p53−/−

Loss of p53
results in a
dramatic decrease
in the life span of
these mice,
concomitantly
with an increased
incidence of
tumors, in
particular
lymphomas.

131 • C57Bl/6

• Germline

• Lck-TERT mice

Higher incidence of
spontaneous lymphoma.

n.d. Lck-Tert
thymocytes show
greater
spontaneous and
IR-induced
chromosomal
instability.

84 • C57Bl/6

• Germline

• K5-mTERT

More hyperproliferative lesions Increased maximal
lifespan
Decreased degenerative
lesions (kidney, male
germ line)

132 • FVB/n strain

• CMV enhancer/β-actin promoter

n.d. Enhancing of hair
growth through stem cell
mobilization
(independently of the
TERC component)

14 • C57Bl/6

• Germline

• K5-mTERT/Sp53 and K5-mTERT/Sp53/SArf/Sp16

Higher tumor incidence
(mainly lymphomas) and
similar lifespan (K5-mTERT/
Sp53 vs K5-mTERT)

Lower tumor incidence
and higher lifespan and
health-span in K5-
mTERT/Sp53/SArf/
Sp16 vs K5-mTERT/
Sp53 or WT controls

89 • G4TERT-ER mice (30–35 week old C57Bl/6)

• 4-OHT activation late in life

Telomerase activation was not
sufficient to promote
tumorigenesis.

Extended life and health
span

Chromosomal
instability was
referred.
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Ref Model / Telomerase activation Cancer Aging Comments

120 • C57Bl/6 (1yr and 2 yrs old)

• TA-65

No increase in tumor incidence Extended health. No
differences in lifespan

Activation of
telomerase is not
direct
Other studies have
described similar
telomerase
activators in mice
and humans (see
references: 127, 133)

82 • G4 TERT−/− (WW6/C57BL/6)

• Ad-mTERT (specifically to the liver)

n.d. Ad-mTERT injection
partial rescue PGC-1α/β,
Glc-6-P and Pepck
expression, accompanied
by a 30% increase in
glucose levels relative to
Ad-GFP controls, in G4-
TERT−/− mice

134 • C57Bl/6 (18 to 22 g., males and females)

• Ad-mTERT-GFP (microinjection into the bilateral
Dg of mice)

n.d. Ad-mTERT-GFP led to
neurogenesis
upregulation, produced
antidepressant-like
behaviors, and prevented
the CMS-induced
behavioral modifications

128 • CD1 (9–11 weeks old)

• AGS-499

n.d. Extended health
(neuroprotective effects
in NMDA-injected CD-1
mice)

No mechanism of
telomerase
activation

15 • C57Bl/6 (1yr and 2 yrs old)

• AAV9-mTERT

No increased tumor incidence Extended life and health
span
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