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Most human cells have a limited lifespan
that is controlled by cell cycle progres-
sion and the mitotic clock.1,2 Because of
the inability of DNA polymerase to fully
replicate lagging chromosome strands,
there is a loss of 50 –100 bp of DNA with
each successive cell division.3,4 Telo-
meres, which ultimately determine the
organism’s biologic age, comprise tan-
dem TTAGGG repeats of 5000 to 15,000
bp that normally reside at the ends of
chromosomes as protective caps.5,6 The
nuclear role of telomeres is to prevent
chromosome ends from being identified
as double strand breaks in DNA, thus
limiting chromosome shortening and re-
combination. The length of telomeres is
regulated by telomerase, which catalyzes
the addition of telomeric repeats to the 3�
ends of chromosomes to preserve their
integrity.3

Telomerase was discovered in 1989;
however, the cellular pathways involved
in its biosynthesis and recruitment are
still unclear.7 The structure of human te-
lomerase was identified in 2007 and
comprises two primary components: te-
lomerase reverse transcriptase and te-
lomerase RNA.8 The telomerase reverse
transcriptase protein catalyzes the addi-

tion of deoxynucleotide triphosphates,
whereas telomerase RNA encodes the
complementary telomere template. Te-
lomerase is active throughout embryo-
genesis but is downregulated during tis-
sue differentiation, leaving the majority
of mature human cell types with a lim-
ited response. Consequently, mature
telomeres tend to progressively shorten
with every cell division, eventually re-
sulting in nuclear instability followed by
senescence or apoptosis.9

Cellular senescence is a state of growth
arrest in which cells remain metabolically
active but refractory to mitogenic stimuli.
Replicative senescence can be accelerated
by oxidative stress, which induces telo-
meric attrition.10 As telomeres reach a crit-
ically short length, they are recognized as
damaged chromosomes, activating tumor
suppressor protein p53 and cell cycle in-
hibitor p16INK4a.11 The activation of p53
leads to overexpression of the cyclin-de-
pendent kinase (CDK) inhibitor, p21. The
p21 protein binds to and inhibits the activ-
ity of CDK2/4, resulting in cell cycle G1-
phase arrest. Similarly, p16INK4a inhibits
CDK4 to prevent recurrent cellular prolif-
eration. Among people over the age of 60,
the expression levels of p53 and p16INK4a

are elevated, with serious implications for
repair and regeneration of vital organs, in-
cluding the kidneys.1,11,12

The decline of renal function in the
elderly is well documented and charac-
terized by multiple phenotypes including
decreased GFR, increased vascular resis-
tance, decreased renal blood flow, and a
20 to 25% loss of renal mass (Table 1).13

During aging, telomere length decreases
more rapidly in the renal cortex than in
the medulla, contributing to the cortical
scarring and glomerular senescence ob-
served in aging kidneys.14 Aging also asso-
ciates with multiple diseases, including
stroke and congestive heart failure, which
are comorbid with kidney failure.15 Pa-
tients with heart failure have significantly
shorter telomeres, suggesting it may be
one factor affecting the sensitivity of the
kidney to injury.16 In addition to age-de-
pendent telomere shortening, factors
such as oxidative stress and dysregula-
tion of the renin-angiotensin system
(RAS) can decrease telomere length and
increase the intrinsic biologic age.17

Whereas the RAS regulates BP and ion
balance and is critical in maintaining re-
nal physiology,18 the dysregulation of
RAS results in oxidative stress and in-
flammation,19 which contributes to de-

Published online ahead of print. Publication date
available at www.jasn.org.

Correspondence: Dr. Rick G. Schnellmann, Depart-
ment of Pharmaceutical Sciences, 280 Calhoun
Street, Charleston, SC 29425. Phone: 843-792-
5086; Fax: 843-792-7393; E-mail: schnell@musc.edu

Copyright © 2011 by the American Society of
Nephrology

ABSTRACT
The role of telomeres and telomerase in human biology has been studied since the
early 1990s because telomere attrition is implicated in various diseases including
cardiovascular dysfunction, carcinogenesis, and the progression of acute kidney
injury. Telomeric length is a reliable indicator of intrinsic biologic age and a
surrogate for the mitotic clock. Because the prevalence of chronic kidney disease
increases with age, telomere length and telomerase activity may play a role in its
progression.
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creased telomere length and renal fibro-
sis.20

Impaired immunity is a predictor of
morbidity and mortality in elderly pop-
ulations, and inflammation also contrib-
utes risk for chronic kidney disease.21

Unlike the majority of somatic cells, the
cells of the immune system are highly
proliferative and therefore require main-
tenance of telomere length. Lympho-
cytes have the ability to upregulate te-
lomerase activity, thereby prolonging
their lifespan.22 Aging, oxidative stress,
and chronic inflammation can cause
lymphocyte telomeres to shorten, result-
ing in immune cell senescence and com-
promised T-cell function. This immuno-
suppression can increase susceptibility to
kidney infection and injury. Alterna-
tively, persistent immune cell activation
engages fibroblasts, resulting in excess
collagen deposition, renal fibrosis, and
pathologic tissue repair.23 When telo-
mere length diminishes in lymphocytes,
a potential outcome is a decreased T-cell
response. This may ultimately contribute
to kidney diseases, such as glomerulo-
sclerosis, and impede renal regenera-
tion.14

The relationship between telomere
shortening and decreased renal repair
and regeneration after injury is an area of
increasing study.24 The progression from
renal injury to end-stage kidney disease
is more prevalent in the elderly than in
young people and is likely caused by a
decrease in repair responses with aging.
Westhoff et al.12 reported that, compared
with wild type, mice lacking functional
telomerase have marked reductions in
renal function and regeneration 7 to 30
days after ischemia-reperfusion injury.

This study suggested that shortened telo-
meres contribute to increased renal in-
jury and decreased recovery after insult.
As stated above, telomere attrition causes
chromosome instability, cellular senes-
cence, and apoptosis, all of which pre-
vent normal cell function and contribute
to disruption of organ homeostasis.2,9

As telomeres become shorter, chro-
mosomes become compromised, and
cells assume more unstable phenotypes.
Although this instability typically trig-
gers senescence, the loss of tumor sup-
pressor genes through the acquisition of
mutations can result in an extended life
span,25 potentially leading to cancer ini-
tiation and progression.4 To acquire
their unlimited potential for prolifera-
tion, tumors cells must attenuate the pres-
sure on telomere shortening, thereby
avoiding perpetual instability and cell
death.26 Telomerase activation is one
mechanism by which tumor cells over-
come successive telomere shortening. For
example, low or undetectable telomerase
activity is seen in most normal tissue or be-

nign tumors, whereas 90% of human can-
cers are telomerase positive.27 This obser-
vation has led to the use of telomerase
levels as a tumor marker for both early
detection and prediction of clinical out-
come. In a 2001 study of telomerase ac-
tivity in urologic malignancy, telomerase
levels were elevated in 90% of bladder,
80% of prostate, and 69% of renal carci-
nomas.4 Elevated telomerase activity was
also detected in the urine samples of
these patients, suggesting it may be used
as an early marker for bladder cancer.

The impacts of telomere length and
activity on human health will continue to
receive attention as the elderly popula-
tion increases. This is of particular con-
cern in vulnerable organs of the cardio-
vascular system. In addition to aging,
lifestyle choices such as high stress and
poor diet correlate with decreased telo-
mere length and detrimental health out-
comes.28 Pharmacologic activation of te-
lomerase has been suggested as a treatment
for certain diseases and as a nutritional
supplement to delay the aging process.
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Figure 1. Changes in telomere length with successive cell divisions.29 In somatic cells,
a portion of the telomere is lost during each progressive cell replication. Eventually the
telomeres become critically short, resulting in the activation of p53 and p16INK4a.
Activation of p53 leads to the overexpression of p21. Both p21 and p16INK4a are
cyclin-dependent kinase inhibitors that prevent continual cell proliferation and cause
senescence. Inactivation of p53 and/or p16INK4a enables cells to bypass senescence,
which results in continued telomere attrition and genetic instability, eventually leading
to cell crisis and apoptosis. Cells able to survive crisis by activating telomerase can
stabilize telomere length and continue to replicate indefinitely, thus risking malignant
transformation. Stem cells and highly proliferative cells like lymphocytes normally have
some telomerase activity, allowing them to maintain telomere length for a longer
period of time.

Table 1. Renal dysfunctions with a
telomeric contribution

Renal senescence
2 glomerular filtration rate
2 urinary concentrating/diluting ability
2 urinary acidification

Impaired potassium clearance
Glomerular senescence
Renal cysts
Fibrosis
Glomerulosclerosis
Renal cell carcinoma
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However, there is significant concern
about the carcinogenic effects of these
potential remedies; the inhibition of te-
lomerase activity is considered a viable
treatment for preventing tumor malig-
nancy. Although promising for the treat-
ment of some tumors, anti-telomerase
therapy does have potential deleterious
effects on highly proliferative cell types
such as lymphocytes. This paradox high-
lights the conflict between the ability of
telomerase to minimize biologic aging
versus increasing cancer risk (Figure 1).29

Nonpharmaceutical interventions are
another potential solution to prevent
telomere attrition. Activities such as
moderate exercise and caloric restric-
tion19 decrease the speed of premature
telomere shortening, possibly because of
a decrease in oxidative stress and an in-
crease in antioxidant defenses.30 Ulti-
mately, telomere length and telomerase
activity may be modifiable factors with
the potential to substantially improve re-
nal health outcomes.
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