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Figure 9. “ In vivo” treatment with ETP-47037 compound does not compromise tissue viability.

A–C Quantification of the number of (A) Ki67-, (B) pan-nuclear p-H3 pattern-, and (C) foci p-H3 pattern-positive cells in untreated and ETP-470037-treated lung
carcinomas. The data represent the mean values obtained for three mice in each group. Error bars represent standard errors.

D Representative Ki67 and p-H3 images.
E Representative H&E images of intestine samples corresponding to untreated and ETP-47037-treated animals. High-magnification images are shown to the right

indicating the presence of normal mitosis, giant multinucleated and aberrant mitotic figures.
F Representative H&E images of bone marrow and skin samples corresponding to untreated and ETP-47037-treated animals. High-magnification images are shown

indicating the presence of necrosis, hemosiderosis, multinucleated cells, and giant nuclei. Bone marrow showed moderated aplasia.
G Telomere length in untreated and ETP-47037-treated lung tumor samples. Representative images are shown to the right.

Data information: t-test was used to assess statistical significance.
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Discussion

Aberrant telomerase activation is a common feature of human

cancers, where it allows the growth of malignant cells by ensuring

maintenance of a minimal functional telomere length that permits

cell division (Kim et al, 1994; Hahn et al, 1999; Gonzalez-Suarez

et al, 2000). Indeed, mutations in the telomerase gene or its

regulatory regions have been found associated with many different

types of cancer (McKay et al, 2008; Wang et al, 2008; Rafnar et al,

2009; Shete et al, 2009; Petersen et al, 2010; Melin et al, 2012;

Bojesen et al, 2013; Garcia-Closas et al, 2013; Horn et al, 2013;

Huang et al, 2013). To date, targeting of telomeres in human

cancer has been mainly via targeting telomerase activity, typically

through direct small molecule inhibitors of the enzyme activity

(Brennan et al, 2010; Joseph et al, 2010), or through immunother-

apy-based approaches (Brunsvig et al, 2006; Suso et al, 2011).

Telomeric repeats can also form DNA higher order structures

known as G-quartets, and molecules that stabilize G-quartets have

also been proposed to inhibit telomerase-mediated telomere elonga-

tion in cancer (Sun et al, 1997; Shin-ya et al, 2001; Huang et al,

2008). A predicted shortcoming of therapeutic strategies based on

telomerase inhibition to treat cancer is that they will be effective only

when telomeres shorten below a minimum length. Indeed, telomer-

ase activity is dispensable for transformation of cells with long telo-

meres (Seger et al, 2002), and studies with telomerase inhibitors

indicate that they are effective preferentially in cells with short telo-

meres (Hahn et al, 1999; Herbert et al, 1999; Wang et al, 2004; Bren-

nan et al, 2010; Wu et al, 2012; reviewed in Buseman et al, 2012).

In line with this, telomerase abrogation in the context of cancer-

prone mouse models, including the K-Ras+/G12D lung tumorigenesis

mouse model, only showed anti-tumorigenic activity after several

mouse generations in the absence of telomerase when telomeres

reached a critically short length (Chin et al, 1999; Greenberg et al,

1999; Gonzalez-Suarez et al, 2000; Perera et al, 2008). Moreover,

these anti-tumorigenic effects of short telomeres owing to telomerase

deficiency are abrogated in the absence of p53 (Chin et al, 1999;

Greenberg et al, 1999).

In contrast to telomerase inhibition, telomere uncapping has

been shown to cause rapid induction of cell death and/or senes-

cence in a manner that is independent of telomerase activity and

telomere length (Karlseder et al, 1999; Smogorzewska & de Lange,

2002; Martinez et al, 2009). Owing to the fact that telomere uncap-

ping can be achieved independently of telomere length, it emerges

as a more universal way to rapidly impair the growth of dividing

cells. Indeed, in our experimental system, Trf1 abrogation results in

a dramatic reduction in the number and the size of malignant lung

carcinoma lesions, even in the absence of p53, already in the first

mouse generation and in the absence of telomere shortening, indi-

cating that Trf1 deficiency severely impairs cancer progression in

the context of oncogenic K-Ras. As a consequence of this, all the

Trf1D/D K-Ras+/G12V p53�/� mice survived until the end point of the

experiment (24 weeks post-infection), while only 50% of the Trf1+/+

K-Ras+/G12V p53�/� mice survived the same period. These findings

indicate that Trf1 deficiency impairs the development of K-Ras-

induced lung carcinomas. Of note, this represents the first time

that effective impairment of K-Ras+/G12V p53�/� carcinomas is

achieved, as genetic abrogation of other therapeutic pathways did

not impair tumor growth in the absence of p53 (Navas et al,

2012). Furthermore, here we show that downregulation of Trf1 can

also block the growth and metastatic potential of both mouse and

human lung cancer cell lines derived from already established

K-Ras-induced lung carcinomas by using xenograft models.

We find that the mechanisms through which Trf1 deletion

impairs cancer progression are related to its previously described

roles in telomere capping, telomere replication, and mitosis (Marti-

nez et al, 2009; Sfeir et al, 2009). In this regard, we show that Trf1

deficiency results in a high burden of telomeric DNA damage, genetic

instability, proliferation defects, apoptosis, and mitotic catastrophe.

Importantly, we demonstrate here that a long-term systemic

depletion of TRF1 in healthy adult tissues does not compromise

organism viability, although we observed decreased cellularity in

some highly proliferative compartments, such as the hematopoietic

compartment and blood, which were recovered upon tamoxifen

removal. Together, these findings suggest a therapeutic window for

TRF1 inhibition in cancer.

Inspired by the above notion, we have identified compounds

that disrupt TRF1 binding to telomeres illustrating the feasibility of

chemically targeting shelterin proteins. Furthermore, we have

shown that “in vivo” treatment of already established lung

adenocarcinomas with one of the identified compounds,

ETP-47037, results in decreased TRF1 signal in vivo and the

impairment of tumor progression in the absence of decreased

mouse viability.

In summary, the results described here are proof of concept that

TRF1 abrogation is an effective therapeutic strategy to block the

growth of aggressive lung carcinomas independently of telomere

length and p53 status and that it is possible to achieve this by small

molecules that are able to target TRF1 in vivo. Finally, as this strat-

egy relies on a universal mechanism, namely induction of telomere

uncapping, we speculate that it could be applied in many other

cancer types.

Materials and Methods

Mice

K-Ras+/LSLG12Vgeo (Guerra et al, 2003), and Trf1lox/lox (Martinez et al,

2009), p53�/� (Jackson Labs, http://jaxmice.jax.org/strain/

002101.html) strains were crossed to obtain K-Ras+/LSLG12Vgeo

Trf1lox/lox p53�/� mice. To generate Trf1lox/lox hUBC-CreERT2 mice,

we crossed our Trf1lox/lox (Martinez et al, 2009) with a mouse

strain that carries a ubiquitously expressed, tamoxifen-activated

recombinase, hUBC-CreERT2mice (Ruzankina et al, 2007). Trf1lox/lox

hUBC-CreERT2 mice were fed ad libitum for 7 weeks with tamoxi-

fen-containing diet (Tekland CRD Tam400/CreER). For allograft

experiments, 7-week-old athymic nude females were obtained from

Harlan. All mice were maintained at the Spanish National Cancer

Center under specific pathogen-free conditions in accordance with

the recommendations of the Federation of European Laboratory

Animal Science Associations (FELASA). All animal experiments

were approved by the Ethical Committee and performed in accor-

dance with the guidelines stated in the International Guiding Prin-

ciples for Biomedical Research Involving Animals, developed by

the Council for International Organizations of Medical Sciences

(CIOMS).
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Adenovirus intratracheal infection

Eight- to ten-week-old mice were treated once with intratracheal

adeno-Cre (Gene Vector Core, University of Iowa, 1 × 1010 pfu/ml)

instillation with 1 × 108 PFU/mouse of virus after anesthesia by

intraperitoneal injection of ketamine–medetomidine (Domitor,

1 mg/ml; Orion Corporation). To wake up the mice after the instilla-

tion, they were injected with 0.05 mg of atipamezole (Antisedan,

5 mg/ml; Orion Corporation).

In vivo imaging by computed tomography (CT) and positron
emission tomography (PET)

Nine weeks after inoculation, an in vivo follow-up of tumor growth

was achieved by six computed tomographies (CT) every 15 days.

PET was performed 22nd week post-inoculation, and the mice were

sacrificed (24th week post-inoculation). CT and PET analyses were

performed as previously described (Ambrogio et al, 2014). For PET

quantification, tumor regions of interest (ROIs) were selected in

the PET-CT overlapped image. In these ROIs, the standardized
18FDG-glucose uptake value (SUV) was calculated using the follow-

ing formula: SUV = tumor FDG concentration (MBq)/(injected

dose/body weight).

Telomere length analyses on tissue sections

Quantitative telomere fluorescence in situ hybridization (Q-FISH)

directly on tumor sections was performed as previously described

(Flores et al, 2008) and analyzed by Definiens software.

Chemical library

The Experimental Therapeutics Program at CNIO, ETP-CNIO,

owns a chemical library of about 50,000 single compounds built

as a result of the consolidation of several sub-libraries selected

attending to different criteria such as chemical diversity, kinase-

targeted focus, potential to disrupt protein–protein interactions,

and the presence of low molecular weight compounds to facili-

tate fragment-based drug discovery. The drug-likeness of the

whole library was also ensured by the application of filters such

as “rule of five” (Lipinski, 2004). The compounds were selected

from commercial origin as well as from internally newly

designed and synthesized chemical matter. Representative

libraries of the whole 50K library with smaller sizes were defined

after clustering, based on similarity analysis, and selection of

representative compounds from each cluster. A 640-compound

library, subject of the currently reported screening campaign, is

the minimum size set of compounds representing the chemical

ETP-CNIO collection.

Screening for identification of TRF1 inhibitors

We tested the CNIO-640 library previously described. iPS cells

expressing eGFP-TRF1 were seeded in 0.1% gelatin-pretreated cell-

carrier black 384-well microplates (Perkin Elmer) at a density of

1.25 × 104 cells per well 24 h before adding the compounds.

Compounds were weighed out and diluted in dimethyl sulfoxide

(DMSO) to a final concentration of 10 mM (mother plate). From

here, an intermediate dilution plate was prepared. The appropriate

volume (ll) of each compound solution was added automatically

(Beckman FX 96 tip) from the intermediated plate to the media of

plated cells to get a 12.5-lM final concentration for each compound

assayed in duplicate. Cell viability was previously tested in a dose

curve with increasing concentrations of DMSO. After 8-h incubation,

cells were fixed in 4% paraformaldehyde in phosphate-buffered

saline (PBS) for 15 min at room temperature and washed three

times with PBS. Those compounds that killed cells at 12.5 lM at 8 h

were not considered as positive hits.

For quantitative measurement of eGFP-TRF1 foci levels,

pictures of fixed cells were automatically acquired from each well

by the Opera High Content Screening (HCS) system (Perkin

Elmer). Sixty images of random fields per well, with a

40 × magnification lens, were taken under non-saturating condi-

tions. At least 1 × 103 cells were analyzed for each well. Briefly,

images were segmented using the DAPI staining to generate

masks matching cell nuclei from which eGFP-TRF1 foci were

analyzed. SPSS software was used for statistical analysis as

follows: Within each plate, the eGFP-TRF1 intensities of control

eGFP-Trf1KI/KI cells were distributed by quartiles (Q). First-quartile

distribution (Q1) was taken as threshold to distinguish low- or

high-intensity eGFP-TRF1 foci. Percentage of low vs. high GFP-

TRF1 levels was normalized using the average of negative and

positive controls as minimum and maximum reference levels. The

number obtained was taken as relative TRF1 inhibition for each

compound.

The paper explained

Problem
Unlimited cell division in cancer requires activation of mechanisms
that ensure maintenance of telomere length. Targeting of telomeres
in human cancer has been approached via targeting telomerase
activity. A caveat of therapeutic strategies based on telomerase
inhibition to treat cancer is that they will be effective only when
telomeres shorten below a minimum length. We have addressed
whether induction of telomere dysfunction independently of telo-
mere length by targeting a shelterin component could be applied
as a more universal way to rapidly impair the growth of dividing
cells.

Results
We demonstrate that acute telomere uncapping owing to inhibition
of the TRF1 shelterin component has therapeutic activity in blocking
the growth of p53-deficient K-Ras-induced lung tumors by inducing
DNA damage at telomeres. This anti-tumorigenic activity of TRF1 inhi-
bition is independent of telomere length. In parallel, we show that
whole-body partial TRF1 depletion, although resulting in moderate
loss of cellularity in the bone marrow in few Trf1-deleted mice, did
not impair organismal viability and survival. Importantly, we identify
small molecules that disrupt TRF1 binding in vivo, and that effectively
block the growth of already established p53-deficient K-Ras-induced
lung carcinomas through induction of DNA damage and cell arrest,
again in the absence of deleterious effects in mouse survival or
viability.

Impact
This represents the first demonstration that targeting the TRF1 shel-
terin component may represent a novel therapeutic approach for
cancer treatment.
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In vivo treatment with compound ETP-47037

K-Ras+/LSLG12Vgeo Trf1lox/lox p53�/� tumors were induced by intra-

tracheal adeno-Cre instillation as described above. Once the lung

tumors developed, mice were daily dosed orally with 75 mg/kg of

ETP-47037 formulated in 10% N-methyl-pyrrolidone and 90% poly-

ethylene-glycol 300 for 10 days and 2 days of resting. The reduction

in number and size of the tumors was analyzed by computed

tomography (CT).

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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