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SUMMARY

Adversity, particularly in early life, can cause illness.
Clues to the responsible mechanisms may lie with
the discovery of molecular signatures of stress,
some of which include alterations to an individual’s
somatic genome. Here, using genome sequences
from 11,670 women, we observed a highly significant
association between a stress-related disease, major
depression, and the amount of mtDNA (p = 9.00 3
10�42, odds ratio 1.33 [95% confidence interval
[CI] = 1.29–1.37]) and telomere length (p = 2.84 3
10�14, odds ratio 0.85 [95% CI = 0.81–0.89]). While
both telomere length and mtDNA amount were asso-
ciated with adverse life events, conditional regres-
sion analyses showed the molecular changes were
contingent on the depressed state. We tested this
hypothesis with experiments in mice, demonstrating
that stress causes both molecular changes, which
are partly reversible and can be elicited by the admin-
istration of corticosterone. Together, these results
demonstrate that changes in the amount of mtDNA
and telomere length are consequences of stress
and entering a depressed state. These findings iden-
tify increased amounts of mtDNA as a molecular
marker of MD and have important implications for
understanding how stress causes the disease.

INTRODUCTION

Adverse life experiences, particularly those in childhood,

contribute to disease morbidity and mortality [1–7]. There

is considerable interest in understanding the mechanisms

through which they do so, as it remains unclear how illness be-

comes apparent decades after the presumed initiating event.

Long-standing hypotheses include chronic activation of the

hypothalamic-pituitary-adrenal axis [8–10] and alterations of

neuroimmune function [11]. Molecular signatures of stressful

life experiences and their relation to disease are therefore of spe-

cial interest to clarify the causal relationship between signature,

disease, and stress.

Causal associations between stressful life events and early

adversities such as childhood sexual abuse and major depres-

sion (MD) are well documented [12–14], suggesting that molec-

ular signatures of stress may be enriched in sufferers of MD. The
Cur
China, Oxford and VCU Experimental Research on Genetic

Epidemiology (CONVERGE) recruited 5,864 women with recur-

rent MD and 5,783 matched controls, from whom low-coverage

genome sequences were obtained together with aggregate

measures of lifetime adversities, including assessments of

childhood sexual abuse [15, 16] and stressful life events

[17, 18]. In CONVERGE, both childhood sexual abuse and

stressful life events are strongly associated with risk for MD.

More severe forms of abuse are more strongly associated with

MD than milder forms, consistent with a causal relationship

[16, 18–20].

We focused on two variable components of the somatic

genome suspected to be associated with adverse life experi-

ences: telomeric DNA and mtDNA. Accelerated shortening of

telomeres, the sequence that caps the ends of chromosomes,

has been associated with stress [21–23], anxiety [24], and MD

[25] (although not all findings have been replicated [26, 27]).

Abnormal mitochondrial morphology and altered metabolic ac-

tivity has been reported in mood disorders [28]. Our aim was to

establish whether telomere length and the amount of mtDNA

represent markers of stress-related illness and to explore how

such molecular signatures might arise.

RESULTS

Shortened Telomeres and Increased mtDNA Are
Associated with Adversity
We first examined the relationship between mean telomere

length and amount of mtDNA with MD. We assessed the mean

length of telomeres (across all chromosomes) from low-

coverage whole-genome sequencing (mean coverage of 1.7X)

of saliva DNA samples of 11,670 subjects (Experimental Proce-

dures). MDwas associated with shorter mean telomere length: in

a logistic regression model, the odds ratio for the contribution of

normalized measure of mean telomere to the risk of MD is 0.85

(95% CI = 0.81–0.89, p = 2.84 3 10�14). Figure 1A shows the

normalized distributions of mean telomere sequence length in

cases and controls.

We obtained a mean coverage of 102X for the mitochondrial

genome fromwhich we estimated for each individual the amount

of mtDNA.We observed a highly significant association between

MD and the amount of mtDNA (p = 9.00 3 10�42 from logistic

regression). Cases had more mtDNA than controls: the odds ra-

tio for the contribution of normalized amount of mtDNA to the risk

of MD was 1.33 (95% CI = 1.29–1.37). Note that the effect is in

the opposite direction to that observed for telomeric DNA. Fig-

ure 1B shows the distributions of normalized amount of mtDNA

coverage for the cases and controls.
rent Biology 25, 1146–1156, May 4, 2015 ª2015 The Authors 1147

mailto:jf@well.ox.ac.uk
http://dx.doi.org/10.1016/j.cub.2015.03.008
http://creativecommons.org/licenses/by/4.0/


Figure 1. Two Molecular Markers of

Depression: Mitochondrial DNA and Telo-

mere Length

Left: Boxplot of normalized measure of mean

telomere length (vertical axis) for cases and con-

trols in the CONVERGE study. Middle: Boxplot

of the normalized amount of mtDNA (vertical axis)

in cases and controls in the CONVERGE study.

Right: Boxplot of the normalized amount of

mtDNA (vertical axis) in cases and controls in

the GENDEP/DECC studies (labeled IOP).
We replicated the association between MD and increased

amounts of mtDNA in a European case-control study [29, 30].

In contrast to the CONVERGE sample, the DNA was extracted

from blood, and samples were of both sexes.We obtained quan-

titative PCR (qPCR) measures of mtDNA from 216 individuals

(108 cases and 108 controls, 123 women and 93men). In a logis-

tic model, the odds ratio for the normalized measure of mtDNA’s

contribution to the risk of MD was 1.35 (95% CI = 1.11–2.10,

p = 8.3 3 10�5; Figure 1C).

We next explored the association in the CONVERGE data be-

tween stressful life events and both mean telomere length and

amount of mtDNA. Telomere length was significantly shorter in

those who had experienced more stressful life events (p =

0.0018, by linear regression) and in those reporting childhood

sexual abuse (p = 0.043, by linear regression) (Table 1). The

amount of mtDNA was significantly correlated with both the total

number of stressful life events (linear regression p = 4.833 10�4)

and childhood sexual abuse (linear regression p = 3.65 3 10�5).

The association of bothmolecular markers with childhood sexual

abuse was stronger with increasingly severe abuse (Table 1).

Molecular Changes Are Not Due to Technical or
Biological Artifacts
We explored a number of explanations for the association be-

tween molecular markers and MD (Figures 1, S1, and S2; Tables

1 and S1; Supplemental Experimental Procedures). First, we

considered artifacts arising from incorrectly mapped reads. We

found that the association between amount of mtDNA and MD

could not be explained by contamination or mapping errors:
1148 Current Biology 25, 1146–1156, May 4, 2015 ª2015 The Authors
none of the reads used for assessing the

amount of mtDNA mapped to a set of

all bacterial and plasmid genomes, and

nonemapped to nuclear copies ofmtDNA.

Second, we considered whether the

molecular changes might be due to medi-

cation. We could not explain the telomere

length or mtDNA changes as a result of

cases taking antidepressant medication:

among the MD cases, 975 reported never

having taken any antidepressants. Neither

the amount ofmtDNA nor telomeric length

in these subjects differed significantly

from that assayed in the 4,861 individuals

reporting taking antidepressants (t test

p = 0.96 and p = 0.88, respectively).
Third, we considered whether the effects might be explained

by alterations in the cellular composition of the saliva between

cases and controls (see Supplemental Experimental Proce-

dures). Methylation of cytosine residues at cytosine-guanine

(CpG) dinucleotides differs between cell types [31–35] and

thus contains information about the cellular composition of the

tissue from which it was extracted [36–38]. We assessed

methylation in 156 individuals (78 cases and 78 controls),

selected from the extremes of the distribution of amount of

mtDNA, and matched for age and other potential confounds.

The sites assayed are shown in Table S1, and the percentage

of methylation at each CpG site is shown in Figure S1. MD

case-control status remained highly significantly associated

with the amount of mtDNA (t test p value = 5.14 3 10�18) and

telomere length (p = 6.833 10�5) after accounting for the degree

of methylation at each of the sites (Figure S2). Expressed as a

change in effect size using Nagelkerke’s R2 measure, there is

a 6% reduction in the R2 in a model including methylation and

the amount of mtDNA to predict MD and a 9% reduction for

telomere length. From this analysis, we concluded that the

cellular composition of saliva collected from cases differed

slightly from that of controls and explained less than 10% of

the differences in the amount of mtDNA and telomere length

between cases and controls.

Molecular Changes Are Contingent on the Depressed
State
To investigate a causal relationship between stressful life events,

MD, amount of mtDNA, and telomere length, we performed a



Table 1. Relationship between Childhood Sexual Abuse, Telomere Length, and the Amount of Mitochondrial DNA

CSA Type Excess Telomeric DNAa t Valueb p Valuec Excess mtDNAa t Valueb p Valuec Number Casesd Number Controlse Totalf

Non-genital CSA 0.02 0.35 0.73 0.08 1.37 0.169 186 81 267

Genital CSA �0.08 �1.27 0.20 0.11 2.02 0.045 240 47 287

Intercourse CSA �0.20 �2.45 0.01 0.38 4.67 3.05 3 10�6 159 17 176

Results for analysis of variance in which different forms of childhood sexual abuse (CSA) predict telomere length and the amount of mtDNA. Non-gen-

ital CSA refers to sexual invitation, sexual kissing, and exposing; genital CSA refers to fondling and sexual touching; and intercourse CSA refers to

attempted or completed intercourse.
aEstimated excess of telomeric or mtDNA over mean telomeric DNA or mtDNA in individuals with no CSA.
bt statistic of tests of hypotheses that underlying excess is zero.
cp value of tests of hypotheses that underlying excess is zero.
dNumber of MD cases.
eNumber of controls.
fNumber of total individuals.
series of conditional regression analyses, assuming that stress-

ful life events preceded the onset of MD and the molecular

changes (Supplemental Experimental Procedures). Table 2

shows the counts of individuals categorized by MD disease sta-

tus and number of stressful life events, with the means and SEs

for the amount of mtDNA (Table 2) and telomere length (Table 2)

within each category.

If stressful life events have independent causal effects on

MD and the molecular measures, then the latter should become

independent of MD after conditioning on the number of

stressful events. Table 2 shows this is not the case because

the mean differences in amount of mtDNA and telomere length

between cases and controls, when stratified for the number of

stressful life events, remained highly significant (t tests in third

column of Table 2; mtDNA p values range from 1.25 3 10�18 to

0.37; telomere length p values range from 4.23 3 10�5 to

0.0083).

We next asked whether the effect of stressful life events on

MD is entirely indirect, acting via changes in the amount of

mtDNA or telomere length. We rejected this explanation

because the association between MD and stressful life events

remains highly significant after conditioning on either amount

of mtDNA (p = 5.60 3 10�99; see Table S2, i) or telomere

length (p = 2.x10�100; Table S3, i) in a logistic regression

model. In contrast, the association between stress and amount

of mtDNA or telomere length disappeared when conditioned

on MD (p = 0.11 Table S4, i, and p = 0.11 Table S5, i, respec-

tively). In other words, the predictive power of stress on

amount of mtDNA and telomere length is mediated through a

history of MD.

These conclusions also hold when the number of stressful

life events is replaced by a history of childhood sexual abuse.

In particular, there was no significant difference in the amount

of mtDNA or telomere length when comparing controls who

reported a history of childhood sexual abuse with those

who did not. Mean values of normalized mtDNA for controls

who reported any form of childhood sexual abuse was

�0.136 (SE = �0.007) and �0.095 (SE = �0.001) for no such

history; t test p value = 0.66. Comparable values for telomere

length were 0.168 (SE = 0.0125) and 0.072 (SE = 0.001);

t test p value = 0.27.

These analyses indicate that the molecular markers repre-

sent the current state of illness, regardless of the path by which
Cur
it is reached, and predict that the most pronounced changes

would be found in subjects currently reporting a severe mood

disorder. Our analyses up to this point used subjects for

whom we did not have a current state measure of mood. We

therefore measured the amount of mtDNA in a separate Chi-

nese case-control cohort of MD [39] where a state measure

of mood was available (the Hamilton rating scale [40]). We

selected 29 cases with scores greater than 25 (very severe)

and 25 controls with scores of less than 5. Despite using

such a small sample, we observed a highly significant differ-

ence (t test p value = 0.0008) and an odds ratio of 2.94 (95%

CI 1.26–6.02), more than twice the odds ratio seen in the

CONVERGE sample (odds ratio = 1.33).

Stress Increases the Amount of mtDNA and Shortens
Telomeres
To gain amechanistic understanding of the relationship between

stress, amount of mtDNA, and telomere length, we undertook a

mouse experiment. Sixteen C57BL/6J mice (eight males and

eight females) were stressed for 4 weeks (for 5 days, a different

stressor was administered: tail suspension, force-swim, foot

shock, restraint, and sleep deprivation, followed by 2 days

rest). After 0, 2, and 4 weeks of stress, amount of mtDNA and

telomere length were assessed by qPCR and compared to

age-matched non-stressed controls (eight males and eight

females).

Consistent with our findings in humans, in mice, stress signif-

icantly increased the amount of mtDNA and decreased telomere

length in saliva and in blood (Figure 2). After 4 weeks of stress,

there was a mean increase in the amount of mtDNA of 210%

compared to the unstressed animals in saliva (t test p =

0.0036) and 240% in blood (t test p = 6.1 3 10�5). At the same

time, the length of telomeric DNA was reduced 28% in saliva

(t test p = 0.0001) and 30% in blood (t test p = 0.0017) in stressed

mice as compared to non-stressed. There were no significant

differences in the white cell parameters between stressed and

non-stressed animals (all p values > 0.05), indicating that this

result is unlikely to be due to differences in the blood cellular

composition.

After 4 weeks of stress, half of the animals (eight stressed

mice and eight controls) were kept in home cages without any

intervention to model a recovery period of no stress. Molecular

markers were again tested in blood and saliva, and results
rent Biology 25, 1146–1156, May 4, 2015 ª2015 The Authors 1149



Table 2. Relationship between Stressful Life Events, mtDNA,

Telomere Length, and Major Depression

Difference in Normalized mtDNA Levels in Cases of MD and Controls

per #SLE

#SLE MD Control MD Case

mtDNA Difference t

Statistic, p Value

0 �0.132 (0.019),

2,487

0.142 (0.024),

1,689

�8.86, 1.25 3 10�18

1 �0.156 (0.026),

1,432

0.0987 (0.027),

1,441

�6.83, 1.01 3 10�11

2 �0.103 (0.034),

757

0.165 (0.033),

935

�5.65, 1.84 3 10�08

3 �0.068 (0.058),

334

0.085 (0.044),

507

�2.12, 0.03

4+ 0.062 (0.067),

221

0.132 (0.040),

666

�0.89, 0.37

Difference in Telomere Length in Cases of MD and Controls per #SLE

#SLE MD Control MD Case Telomere Difference

T Statistic, p Value

0 0.078 (0.020),

2,542

�0.053 (0.025),

1,722

4.10, 4.23 3 10�5

1 0.098 (0.026),

1,461

�0.048 (0.027),

1,470

3.91, 9.42 3 10�5

2 0.093(0.035),

780

�0.069 (0.032),

952

3.36, 8.05 3 10�4

3 0.042 (0.053),

342

�0.085(0.045),

517

1.82, 0.069

4+ 0.060 (0.060),

229

�0.129 (0.038),

677

2.65, 0.0083

For each category of stressful life event (#SLE, ranging from none [0] to

more than four [4+] reported events), Table 2 reports the means and

SEs of the normalizedmtDNA levels (top section of the table) and normal-

ized telomere length measures (bottom section of the table), followed by

the numbers of individuals, for MD cases and controls. The last column

gives the t statistic and p value for the difference between cases and

controls.
are shown as week 8 in Figure 2. Four weeks after the discontin-

uation of stress, there were no significant differences between

control animals and those that had been previously exposed to

stress (amount of mtDNA in saliva p = 0.50, in blood p = 0.38;

telomere length in saliva p = 0.85, in blood p = 0.76; all p values

from t tests). These results indicate that the molecular changes

are, at least in part, reversible.

Immediately after the cessation of stress, multiple tissues from

the other 16 animals were assayed for the amount of mtDNA and

telomere length. Figure 3 shows results for four tissues: liver,

muscle, brain (hippocampus), and ovary (ovary was chosen as

we were interested to assess whether the changes might be

transmitted to the next generation). For the amount of mtDNA,

there was a significant increase in liver (p value from t test =

0.005), a significant decrease in muscle (p = 0.014), but no signif-

icant alterations in hippocampus (p = 0.50), and a suggestive

change in ovary (p = 0.086). For telomere length, there was a sig-

nificant 54% reduction in liver (p = 0.03), but no significant

changes in other tissues (muscle p = 0.23, hippocampus

p = 0.59, ovary p = 0.30). These results reveal tissue-specific
1150 Current Biology 25, 1146–1156, May 4, 2015 ª2015 The Author
changes in mtDNA, and possibly in telomere length, as a conse-

quence of stress.

Mitochondrial Function Is Altered in Tissues with
Increased mtDNA
Altering the amount of mtDNA presumably reflects functional

changes in mitochondria, a hypothesis we tested by mea-

suring and comparing the oxidative phosphorylation (OXPHOS)

capacity of mitochondria-enriched fractions from the liver of

stressed and non-stressed mice. Figure 4A shows the mean

values for the change in oxygen concentration over time for

liver mitochondrial preparations taken from eight stressed

and eight control (not stressed) animals. Addition of an equal

amount of ADP (driving force for the electron transport chain

after depletion of residual driving force in the fraction with

excess glutatmate and malate) induced a greater increase in

oxygen consumption in mitochondria from the non-stressed

animals than stressed ones (p = 0.038, from a linear model;

Figure 4B). The complete quenching of OXPHOS upon addi-

tion of electron transport chain inhibitor potassium cyanide in

both stressed and non-stressed mice showed oxygen con-

sumption during the experiment was solely due to OXPHOS.

Results of this experiment showed that OXPHOS efficiency

was reduced in the liver tissue of mice whose amount of

mtDNA had increased in response to stress, suggesting either

an adaptive switch to glycolysis or a compromise in mitochon-

drial function.

Glucocorticoid Administration Reproduces the Effects
of Stress
What might be inducing the molecular changes? We considered

one mechanism: activation of the hypothalamic pituitary adrenal

(HPA) axis [41–48]. We administered corticosterone to eight

C57BL/6J female mice over 4 weeks and oil vehicles of

the same volume to eight control mice of the same strain. Fig-

ures 5 shows that after 4 weeks, there was significantly more

mtDNA in the saliva (p = 0.011) and in the blood (p = 0.0013) of

treated mice compared to controls and that telomere length

had significantly reduced in both tissues (in saliva: p = 0.0023;

in blood: p = 0.0016; all p values from t tests).

DISCUSSION

We report here two important observations on the relationship

between MD and two molecular signatures of adversity, the

amount of mtDNA and mean telomere length. First, the changes

in amount of mtDNA and telomere length are contingent on the

presence of MD. We found no significant molecular changes in

those who reported stressful life events, including childhood

sexual abuse, but had never been depressed. Second, in a

mouse model, while stress over a period of weeks did increase

the amount of mtDNA and shorten telomere length, both

changes were at least partly reversible. While early environ-

mental adversity may result in permanent changes in physiology

and risk of disease [49], our results indicate that it is important to

recognize two trajectories, one leading to molecular signatures

of stress and one to illness.

For the first trajectory leading from adversity to molecular

changes, one possible pathway is through the endocrine
s



Figure 2. Effect of Chronic Stress onmtDNA

in Saliva and Blood of Mice

Boxplot of relative mtDNA changes and relative

mean telomere length over time inmice exposed to

stress (red) and controls (blue). The vertical axis

shows the amount of DNA, assessed by qPCR,

relative to the mean of the values obtained before

stress was imposed (week 0). The mean of week

0 is set to 1, so that results from subsequent weeks

are fold changes relative to pre-stress levels. The

horizontal axis is time in weeks from the beginning

of the experiment. Stress was discontinued after

week 4, so week 8 shows results for previously

stressed animals after 4 weeks of living in a home

cage. At the 4 week time point, the amount of

mtDNA in blood and saliva was significantly

greater in stressed animals (t test p = 6.1 3 10�5

and p = 0.0036, respectively). Also at the 4 week

time point, relative mean telomere lengths in

stressed mice were significantly lower in saliva (t

test p = 0.0001) and blood (t test p = 0.0017) as

compared to non-stressed mice. Differences be-

tween stressed and non-stressed mice in both

measures were not significant at the start of the

experiment or at the 8 week time point.
system, particularly the activation of the hypothalamic pituitary

axis, since changes in both molecular markers could be

reproduced in mice by administration of corticosterone.

Release of glucocorticoids is known to increase in response

to stress. Severe stressors, such as childhood sexual abuse

[42, 50], alter pituitary-adrenal and autonomic reactivity.

In some circumstances, the consequences may be deleterious

rather than adaptive: glucocorticoids have been implicated

in the pathophysiology of posttraumatic stress disorder

[51, 52], and it has been known for many years that some

patients with MD exhibit hypersecretion of cortisol [41, 53,

54], in part due to corticotrophin releasing factor (CRF) hyper-

secretion [55].

For the second trajectory leading to illness, we hypothesize

that while adversity may on its own have an effect on both

the amount of mtDNA and mean telomere length, the extent

and persistence of these molecular changes depend on an in-

dividual’s susceptibility to MD, either from genetic or additional

environmental predisposing factors. In many individuals, the

molecular signatures will be small and transitory, but in those

with MD, the effects may be larger or last for a longer period

of time. Subjects who have never been diagnosed with MD,

yet suffered severe adversity, may have had detectable alter-

ations in mtDNA levels and mean telomere length in particular

tissues at the time they experienced stressful life events, but

these changes would have reversed and no longer be detect-
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able by the time they were interviewed.

We emphasize that the molecular

changes we observe are neither risk fac-

tors nor causes of MD. The correlation

between stress, mtDNA, and telomere

length is contingent upon MD; we could

find no evidence that stressful life events
act via changes in mtDNA or telomere length to increase the

risk of MD. Thus, our data provide no support for a role of

changes in the amount of mitochondrial DNA or length of telo-

meres in regulating mood.

The disease-state dependence of the measures is important

when considering the potential use of the changes as bio-

markers. It is noteworthy in this regard that in a sample when

we assayed amount of mtDNA in currently severely ill subjects,

a robust difference was detected in a comparison of just 29

cases and 25 controls. This suggests that, despite the relatively

small effects and large variances seen in the saliva sample, there

may be circumstances where the amount of mtDNA could serve

as a useful biomarker. The relatively larger increases seen in

the mouse experiment (up to 4-fold) suggest that controlling

for inter-individual variation would improve the chances of the

biomarkers having a clinical application.

Changes in mean telomere length and levels of mtDNA pre-

sumably reflect altered metabolic strategies in times of

perceived or expected stress. Experiments assessing OXPHOS

efficiency in mice showed a decrease in OXPHOS energy pro-

duction in stressed mice with elevated mtDNA levels. The tis-

sue-specific effects of stress on amount of mtDNA and mean

telomere suggest different, or possibly sequential, pathways

governing tissue-specific change. It is possible that these

changes might in part explain changes in appetite and sleep

occurring during the state of depression.
156, May 4, 2015 ª2015 The Authors 1151



Figure 3. Alterations of mtDNA in Different

Tissues after 4 Weeks of Stress

Top: Assessment of mtDNA in four tissues.

Bottom: Assessment of telomere length in four

tissues. The vertical axis shows the amount of

mtDNA or telomere length assessed by qPCR,

relative to the mean of the values obtained for

control animals (no stress). The horizontal axis

gives the names of the tissues for the two condi-

tions: stress (red) and no stress (blue).
EXPERIMENTAL PROCEDURES

The CONVERGE Study, Samples, DNA Preparation, and Sequencing

All 11,670 samples are drawn from the CONVERGE study of MD. The study

protocol was approved centrally by the Ethical ReviewBoard of Oxford Univer-

sity (Oxford Tropical Research Ethics Committee) and the ethics committees

responsible for each hospital in China. The study posed minimal risk to the

subjects (an interview and saliva sample). Stressful life events and childhood

sexual abuse were assessed retrospectively. The stressful life events section

of the CONVERGE interviewwas developed for the Virginia Adult Twin Study of

Psychiatric and Use Disorders (VATSPUD) [17]. It assesses 16 traumatic life-

time events and the age at their occurrence. The childhood sexual abuse

was a shortened version of the detailed module used in the VATSPSUD study,

which was in turn based on the instrument developed byMartin et al. [56]. DNA

was extracted from saliva samples using the Oragene protocol.

Sequencing librarieswere constructed fromDNA fragmentedusing theCova-

ris Adaptive Focused Acoustics (AFA) technology. QIAquick Gel Extraction kit

was used to purify the DNA fragments. Each DNA sample was uniquely tagged

with a sequencing index for multiplex library preparation. Insert sizes were on

average 400 bp. Library quality was checked with an Agilent 2100 Bioanalyzer

and ABI StepOnePlus Real-Time PCR System. Libraries were sequenced on

IlluminaHiseq2000machines.Sequencing reads foreachof the11,670samples

were aligned toGenomeReferenceConsortiumHumanBuild 37patch release5

(GRCh37.p5) with Stampy (v.1.0.17) [57] and stored in BAM format [58].

The GENDEP and DeCC Studies, Samples, and qPCR

Cases and control samples were drawn from the United Kingdom Depression

Case-Control (DeCC) study [29] and theGenome-Based Therapeutic Drugs for

Depression (GENDEP) study [30]. mtDNA copy number was estimated from

DNA extracted from blood samples by qPCR, using a TaqMan Universal PCR

MasterMix on anABI StepOnePlusReal-Time PCRSystem (Life Technologies).

The pre-designed TaqMan assay Hs02596867_s1 was used to amplify a frag-
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ment of the MT-CYB gene on the mitochondrial

chromosome in duplex with the TaqMan RNaseP

CopyNumber Reference Assay (Life Technologies,

part number 4403326) as an internal control.

Extracting and Quality Control of

Mitochondrial Reads from Low-Coverage

Whole-Genome Sequencing Data

All reads mapped to the human mitochondrial

genome NC_012920.1 were extracted from the

whole-genome BAM files mapped to GRCh37.p5

using Samtools (v.0.1.18) [58]. The mitochondrial

reads extracted were then converted to the

FASTQ format using Picardtools (v.1.108, http://

broadinstitute.github.io/picard/) and mapped to a

combined reference containing 894 complete bac-

terial genomes, 2,024 complete bacterial chromo-

somes, 154 draft assemblies, and 4,373 complete

plasmids sequences (in total, 7,390 unique bacte-

rial DNA sequences) available on NCBI using BWA

(v.0.5.6) [58]. All reads mapped to bacterial DNA

sequences were filtered out using Samtools
(v.0.1.18) [58] by imposing a mapping quality filter of 59 (Phred-scale probabil-

ity of being wrongly mapped) and removing reads with FLAGs (-F 1804) that

identify unmapped reads, unpaired reads, reads that do not pass quality con-

trol, reads thatmay be PCR or optical duplicates, and reads that are secondary

alignments that alsomap to other areas of the reference. No reads from filtered

BAM files of any sample map onto the combined bacterial reference.

Estimation of mtDNA Copy Number

Average read depth per 100 bp is calculated for the mtDNA reads mapped to

NC_012920.1 both before and after filtering out poorly mapped reads

including those potentially from bacterial genomes using SAMTOOLs

(v.0.1.18) [58]. There are regions in the mitochondrial genome replicated in

the nuclear genome commonly known as nuclear copies of mitochondrial

DNA (NUMTs), which would most likely be present as secondary alignments.

We calculated average read depth per segment of 100 bp in the mtDNA align-

ments both before and after filtering and compared the two sets of read

depths. To reduce errors in estimation of coverage due to NUMTs, segments

with big differences in read depth (>5% of the filtered read depth) between the

filtered and unfiltered alignments that are more likely to span NUMTs were

excluded from our calculation of mtDNA copy number. We arrived at a mea-

sure of mtDNA copy number by taking the mean read depth in the filtered

alignments across all remaining 100 bp segments, then regressing it with

sequencing batch, sample age, and average filtered read depth on chromo-

some 20, then transforming the residuals to normality using a quantile normal

function in the R statistical software language [59].

Estimation of Mean Telomere Length

Mean telomere length was quantified from low-coverage whole-genome

sequencing data mapped to Genome Reference Consortium Human Build

37 patch release 5 (GRCh37.p5) with Telseq v.0.0.1 [60]. The estimated

mean telomere length output from Telseq was already corrected for whole-

genome coverage and the GC content of DNA; it was then regressed with

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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Figure 4. The Oxygen Consumption of

Mouse Liver after Stress Administration

(A) Oxygen concentration (vertical axis) detected

per second (horizontal axis) per mg of mitochondria.

The slope of the curve indicates the rate of oxygen

consumption. Glutamate/malate (GL/MA) is added

at 3min after addition of isolatedmitochondria, and

oxygen consumption was assessed after substrate

addition. The addition of ADP (100 s later) initiates

active respiration while potassium cyanide (KCN)

(100 s later) inhibits all mitochondrial function.

(B) Oxygen consumption rate per mg of mitochon-

dria after the addition of the three compounds,

comparing stressed and non-stressed animals.
batch and sample age before the residuals were transformed to normality us-

ing a quantile normal function in the R statistical software language [59].

Association between Molecular Markers, MD, and Stress

We tested for association between MD and molecular markers using logistic

regression in the R statistical software language [59]. All logistic regression

models included as covariates the first three principal components (PCs)

from a principal-component analysis (PCA) performed with Genome-wide

Complex Trait Analysis (GCTA) v.1.24.4 [61] using a genetic relationship matrix

(GRM). The GRM was generated with 561,819 common, tagging single nucle-

otide polymorphisms (SNPs) from all autosomes. All SNPs in this tagging set

were polymorphic in 1,000G phase 1 Asian (ASN) panel, occur at greater

than 5% minor allele frequency in CONVERGE study samples, and are out

of linkage disequilibrium (LD) with each other (maximum pairwise LD = 0.8).

Mouse DNA Extraction

DNA was extracted from mouse tissues using a QIAamp DNA Investigator Kit

(QIAGEN). Saliva was collected from mice by inserting a disposable inocula-

tion loop into the animal’s mouth, allowing the animal to chew for a few sec-

onds, before rinsing the loop in QIAampDNA Investigator Kit ATL buffer. Blood

was collected from a superficial tail vein.

Quantification of mtDNA Levels by qPCR

qPCRwas carried out using the Bio-Rad iQ SYBRGreen supermix supplied by

Roche Molecular Biochemicals. A nuclear genomic fragment of 160 bp was

amplified from the mouse Gapdh gene (forward 50-TGACGTGCCGCCTGGA

GAAAC-30, reverse 50-CCGGCATCGAAGGTGGAAGAG-30. A 117 bp fragment

of the mitochondrial genome (positions 13603–13719) was amplified with

primers described in [62] (forward 50- CCCAGCTACTACCATCATTCAAGT-30,
reverse 50-GATGGTTTGGGAGATTGGTTGATGT-30). qPCR was performed

under the following conditions: denaturation 95�C for 10min followed by 50 cy-

cles of 15 s at 95�C and 1min at 60�C. An estimate of the mtDNA copy number

was calculated using the mean of Gapdh as a control [63]. All samples were
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duplicated at each time point. PCR efficiencies

were between 90%–110% (average coefficient

variance: 0.806). PCR runs were discarded if

they failed to meet the following criteria: no

template control (NTC) with a quantitation cycle

(Cq) < 38 cycles; sample with a Cq > 30 cycles;

PCR efficiency > 90% and < 110.0%; standard

curve R2 < 0.980; replicate group Cq SD greater

than 0.20. qPCRs were carried out at the end of

each experiment and all time points were analyzed

on a single plate, thus excluding batch effects.

Quantification of Telomere Length by

Monochrome Multiplex qPCR

Average telomere length was measured from

mouse DNA using a previously described mono-

chrome multiplex qPCR (MMQPCR) method [64]
with the following conditions: denaturation at 95�C for 15min followed by 2 cy-

cles of 15 s at 94�C and 60 s at 49�C, 4 cycles of 15 s at 94�C and 30 s at 59�C,
20 cycles of 15 s at 85�C and 30 s at 59�C, and 27 cycles of 15 s at 94�C, 10 s

at 84�C, and 15 s at 85�C. Forward and reverse telomeric primers were 50-
ATACCAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTCATGG-30 and 50-GAGG

CAATATCCCTATCCCTATCCCTATCCCTATCCCTAACC-30. Average telo-

mere length ratio was estimated from the ratio of telomere product to that of

a single copy nuclear gene albumin, forward and reverse primers for which

were 50-CGGCGGCGGGCGGCGCGGGCTGGGCGGAAACGCTGCGCAGAA

TCCTTG-30 and 50-GCCCGGCCCGCCGCGCCCGTCCCGCCGCTGAAAAG

TACGGTCGCCTG-30.

Mitochondrial Oxygen Consumption

We measured oxygen consumption from mouse liver mitochondrial prepara-

tions over time using a Clark electrode. After the addition of respiratory sub-

strates (glutamate and malate), oxygen consumption was monitored for 100

s, after which ADPwas added and oxygen consumptionmeasured for a further

100 s. Potassium cyanide (KCN) was added 100 s later to inhibit all mitochon-

drial oxygen consumption.

Animal Experiments

All experiments were carried out in strict accordance with the recommenda-

tions in the Guide for Laboratory Animals Facilities and Care as promulgated

by the Council of Agriculture, Executive Yuan, ROC, Taiwan. The protocol

was approved by the Institutional Animal Care and Use Committee of Chang

Gung University (permit number: CGU13-067). Animals were group housed

and randomly assigned to stress or non-stress experiments.

Mouse stress experiment: mice (strain C57BL/6J, female n = 8, male n = 8,

aged 12 months) were stressed over 5 days followed by 2 days rest, repeated

for 4 weeks. On the first day, animals were suspended from their tails for

10 min. This was repeated three times, with 5 min rest between tail suspen-

sions. On the second day, animals were placed in a cylinder of deep water

from which there was no escape for 10 min. The forced swim was repeated
156, May 4, 2015 ª2015 The Authors 1153



Figure 5. Effect of Daily Subcutaneous In-

jection of Corticosterone on mtDNA and

Telomere Length in Saliva and Blood inMice

Boxplot of relative amount of mtDNA and relative

mean telomere length over time in mice injected

with corticosterone (red) and controls injected with

the same volumes of oil vehicle (blue). The vertical

axis shows the amount of mtDNA assessed by

qPCR, relative to the mean of the values obtained

before corticosterone was injected (week 0). The

mean of week 0 is set to 1, so that results from

subsequent weeks are fold changes relative to pre-

stress levels. The horizontal axis is time in weeks

from the beginning of the experiment. After

4 weeks, the amount of mtDNA levels in mice in-

jected with corticosterone was significantly higher

in saliva (t test p = 0.011) and blood (t test p =

0.0013) as compared to mice injected with oil

vehicle; relative mean telomere lengths were

significantly reduced in both tissues (in saliva: t test

p = 0.0023; in blood: t test p = 0.0016) in mice in-

jected with corticosterone as compared to mice

injected with oil vehicle.
twice with a 10 min rest. On the third day, a foot shock was administered three

times (0.75 mA for 10 s with 10 s rest). On the fourth day, animals were

restrained in a cylindrical tube (12 cm in length and 3 cm in diameter) for

3 hr. On the fifth day, animals were sleep deprived for 24 hr (mice were put

in water tank, containing multiple and visible platforms [4.5 cm in height and

diameter] surrounded by water for 24 hr). For the glucocorticoid experiment,

mice (strain C57BL/6J, female n = 8, aged 12 months) underwent daily subcu-

taneous injection of 30 mg/kg corticosterone (Sigma) or vehicle (oil) for

28 days. Association between mtDNA, telomere length, and stress was

performed in a linear mixed model using the lme4 package in the statistical

software language R [59]. The null model included only weight. Variation in

the amount of mtDNA between different tissues was assessed by a t test,

comparing values between controls and experimental animals.

SUPPLEMENTAL INFORMATION
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