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Context: Obesity in adults is associated with shorter mean leukocyte telomere length (LTL), a marker
of biological age that is also associated with age-related conditions including cardiovascular disease
and type 2 diabetes. However, studies of childhood obesity and LTL have proved inconclusive.

Objective: The objective of the study was to clarify the relationship between telomere length and
childhood obesity by measuring the average LTL in a large case-control cohort.

Participants and Methods: LTL was measured in 793 French children aged 2–17 yr (471 with early
onset obesity and 322 nonobese controls) using multiplex quantitative real-time PCR. The average
LTL in the two groups was compared, and the relationships between telomere length and selected
anthropometric and biochemical measurements were examined.

Results: Obese children had a mean LTL that was 23.9% shorter than that of nonobese children (P �

0.0001). Telomere length was inversely associated with age (R � �0.17, P � 0.002 in controls; R �

�0.15, P � 0.001 in cases), log weight (R� �0.13, P � 0.017 in controls; R � �0.16, P � 0.0004 in
cases), and height (R � �0.15, P � 0.008 in controls; R � �0.17, P � 0.0002 in cases). The mean LTL
of girls and boys was not significantly different in either the cases or controls or in the group overall.

Conclusion: Obese girls and boys have significantly shorter leukocyte telomeres than their nono-
bese counterparts, a finding that highlights a potentially deleterious impact of early onset obesity
on future health. (J Clin Endocrinol Metab 96: 1500–1505, 2011)

Telomeres are DNA-protein complexes found at the
ends of linear chromosomes, which protect chromo-

some ends from degradation and prevent them from being
targeted by cellular DNA damage response systems. In
vertebrates, each telomere is composed of variable num-
bers of the tandem repeat sequence (TTAGGG)n, extend-
ing to 10–15 kb in humans, associated with a protein
complex (1). Telomere length is highly variable between
individuals, reflecting both variation in telomere length at
birth (2) and in differences in telomere attrition rate
throughout life (3, 4).

In the majority of somatic cells, telomeres become pro-
gressively shorter with each cell division, a process exac-

erbated by oxidative stress (5, 6). An additional factor
thought to be responsible for telomere attrition in leuko-
cytes is inflammation because it increases turnover of he-
matopoietic stem cells (7). Short telomeres in adults are
associated with cardiovascular disease (8, 9), type 2 dia-
betes (10–13), insulin resistance (14), impaired glucose
tolerance (15), and hypertension (16). Although the causal
direction of these relationships remains to be determined
(17, 18), short telomeres are nonetheless a well-estab-
lished marker for a range of age-related conditions.

The prevalence of obesity is rising rapidly throughout
the world, with the increase in childhood obesity a par-
ticular cause for concern (19). This sharp rise is attributed
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to the sedentary lifestyle and high-calorie diet adopted
recently by many populations. However, both common
and rare genetic variants sensitize particular individuals to
this obesogenic environment, predisposing to obesity
(20–22).

In studies of adult subjects, shorter leukocyte telomere
length (LTL) has been associated with obesity as well as
smoking and chronic psychological stress (4, 23–26), sug-
gesting that long-term exposure to a deleterious environ-
ment exacerbates telomere attrition. Indeed, there is evi-
dence from a longitudinal study of LTL in overweight and
obese women that the duration of obesity is a more im-
portant factor than weight gain or obesity status per se
(26). Furthermore, weight loss is associated with longer
telomeres in the rectal mucosa of obese men, although it is
not known whether this association is reflected in leuko-
cyte telomeres (27).

In contrast to adults, initial small-scale studies of telo-
mere length and childhood obesity have produced con-
flicting results (28, 29). We therefore sought to clarify the
relationship between LTL and early-onset obesity in a
large (n � 793) case-control study of French children.

Subjects and Methods

Cohorts
Both cases and control subjects were participants in a ge-

nome-wide association study to identify loci associated with
early-onset obesity (21), in which the threshold for childhood
obesity was set as the 97th age- and gender-specific percentile
of body mass index (BMI) from a French reference population
(30). Control children were selected as having a BMI less than
the 90th percentile for gender and age, the threshold for being
overweight (31).

Informed consent from all participants and ethical approval
were obtained as detailed previously (32, 33). Genomic leuko-
cyte DNA was extracted from peripheral blood samples using the
salting-out method (34) for the controls, and using PURE-GENE
D50K DNA isolation kits (Gentra Systems, Minneapolis, MN)
for the cases. In the controls, serum levels of total cholesterol and
fasting glucose were enzymatically determined using the AU 640
analyzer (Olympus, High Wycombe, UK), and serum concen-
trations of high-density lipoprotein (HDL)-cholesterol were
measured using a COBAS-Mira analyzer (Roche Diagnostics,
Rotkreuz, Switzerland). Fasting glucose levels in the cases were
measured using the glucose oxidase procedure. For both cases
and controls, low-density lipoprotein-cholesterol concentra-
tions were calculated using the Friedewald formula (35). In ad-
dition to the anthropometric and biochemical parameters listed
in Table 1, additional data for body fat content, age of onset of
obesity, and eating behaviors were available for 217 of the cases.

Quantitative PCR
The mean LTL in genomic DNA samples prepared from pe-

ripheral blood lymphocytes was measured using multiplex quan-
titative real-time PCR (36). Duplicate quantitative real-time

PCR reactions were carried out in a total volume of 12.5 �l, using
approximately 15 ng of template DNA, with final concentrations
of 1� iQ Sybr Green supermix (Bio-Rad Laboratories, Hemel
Hempstead, UK), 900 nM of telg and telc primers, and 500 nM of
single-copy gene primers (hbgd and hbgu) (for primer sequences,
see Ref. 36). All the PCRs were carried out in white 384-well
plates on a CFX384 real-time PCR detection system (Bio-Rad
Laboratories). Five serial dilutions of a reference sample (leuko-
cyte DNA from an adult female) spanning 5–50 ng were run in
triplicate on each plate.

After amplification and data collection, the CFX manager
software (Bio-Rad Laboratories) was used to generate standard
curves from the reference DNA dilutions, one for the telomere
signal and one for the single-copy gene signal. The telomere am-
plicon signal (T) to single-copy gene control amplicon (S) ratios
for each sample were calculated as T, the amount of reference
DNA that matched the experimental sample for copy number
of the telomere template, divided by S, that which matched the
copy number of the single-copy gene template. The mean co-
efficient of variation for the T/S measurements of duplicate
samples was 4.5%.

Statistical analysis
All telomere measurements (obtained as T/S ratios) were log

transformed before statistical analysis to ensure normal distri-
bution of the data, as assessed both by visual inspection of a
histogram of the plotted values, and the Shapiro-Wilk test for
normality (Fig. 1). Unpaired two-tailed t tests were used to eval-
uate differences in telomere length between groups, using ho-
moscedastic tests in which the variances were not significantly
different (as determined by performing an F test). Pearson’s cor-
relation was used to test for association with individual vari-

TABLE 1. Characteristics of the study cohorts

Nonobese
(n � 322,

163 males)

Obese
(n � 471,

218 males) P
Age (yr) 11.91 � 2.26 11.06 � 3.12 �0.0001
Height (cm) 149.27 � 13.53 152.30 � 16.93 0.004
Weight (kg) 39.98 � 11.02 71.28 � 26.79 �0.0001
BMI Z-score �0.12 � 0.97 4.24 � 1.16 �0.0001
Systolic blood

pressure
(mm Hg)

109.61 � 9.46 114.20 � 14.50 �0.0001

Diastolic blood
pressure
(mm Hg)

54.38 � 9.92 68.44 � 11.33 �0.0001

Total cholesterol
(mmol/liter)

4.87 � 0.84 4.47 � 0.80 �0.0001

HDL-cholesterol
(mmol/liter)

1.48 � 0.37 1.23 � 0.28 �0.0001

Fasting glucose
(mmol/liter)

4.90 � 0.38 4.92 � 0.48 0.11

Anthropometric and biochemical measurements are given as mean �
SD. Measurements for gender, age, height, weight, and BMI Z-score
were available for all participants. Data on systolic and diastolic blood
pressure were available for all nonobese and 370 of 471 obese
subjects; data on fasting glucose were available for all nonobese and
418 of 471 obese subjects; data on HDL-cholesterol levels were
available for all nonobese and 410 of 471 obese subjects and data on
total cholesterol for all nonobese and 412 of 471 obese subjects.

J Clin Endocrinol Metab, May 2011, 96(5):1500–1505 jcem.endojournals.org 1501

The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 07 January 2015. at 09:17 For personal use only. No other uses without permission. . All rights reserved.



ables, which were also log transformed when necessary. Multiple
linear regression with stepwise removal of nonsignificant ex-
planatory variables was carried out to investigate the relative
contributions of selected variables to LTL. All analyses and plots
were carried out using version 2.10.1 of the R statistical package
(cran.r-project.org).

Results

As expected, comparison of selected anthropometric and
biochemical characteristics revealed highly significant dif-
ferences between the cases and controls for several traits

associated with adiposity, including circulating lipid levels
and blood pressure (Table 1). There was no significant
difference between the cohorts in fasting glucose levels
which was therefore not included in later analyses.

Average LTL was ascertained in all 793 subjects using
multiplex quantitative PCR (36). The measurements ob-
tained using this method are expressed as T/S ratios, re-
flecting the telomere signal (T) relative to a single-copy
gene (S), normalized to a single reference individual.

Statistical analyses were carried out after log transfor-
mation of all T/S ratios to achieve a normal distribution
(Fig. 1). The mean log T/S ratio in the obese children
(0.072, SE � 0.006) was significantly less than that in
nonobese children (0.191, SE 0.008, P � 0.0001) (Fig. 2A).
This difference equates to a 23.9% decrease in mean T/S
ratio in obese compared with nonobese children.

To investigateapossiblegendereffect, girls andboyswere
next analyzed separately. The mean log T/S ratio in obese
girls (0.081, SE 0.008) was significantly shorter than that in
nonobese girls (0.199, SE 0.012, P � 0.0001), a difference
that equates to a 23.8% decrease in the T/S ratio. Similarly,
the mean log T/S ratio in obese boys (0.061, SE 0.008) was
significantly shorter than in nonobese boys (0.183, SE 0.010,
P � 0.0001), a difference that equates to a 24.5% decrease
in the T/S ratio. The overall mean log T/S ratio in all girls
(0.126, SE 0.007) was slightly greater than that in all boys
(0.113, SE 0.007), but this difference was not statistically sig-
nificant (P � 0.19) (Fig. 2B).

To investigate the potential influence of pubertal stage
on leukocyte telomere length, the analysis was carried out
separately in those aged younger and older than 9 yr. In the

FIG. 1. Distribution of LTL for all samples (n � 793), expressed as log
T/S values. Log T/S values are normally distributed (Shapiro-Wilk test
for normality, P � 0.65).

FIG. 2. Comparison of LTL distribution in nonobese and obese subjects (A) and in male and female subjects (B). The box plots indicate the
maximum and minimum, the lower and upper quartiles, and the median log T/S ratio value in each group. The mean log T/S ratio values of each
group are given below. A, LTL (expressed as log T/S ratio) is significantly shorter in obese compared with nonobese study subjects. The mean log
T/S ratio in all nonobese samples is 0.191 (SE 0.008), the mean log T/S ratio in all obese samples is 0.072 (SE 0.006, P � 0.0001). B, LTL (expressed
as the log T/S ratio) is not significantly different in male study subjects compared with female study subjects (the mean log T/S ratio of males �
0.113, SE 0.007; the mean log T/S ratio of females � 0.126, SE 0.007, P � 0.19).
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children older than 9 yr, the mean log T/S ratio in the obese
children (0.064, SE 0.007, n � 364) was significantly
shorter than that in nonobese children (0.187, SE 0.008,
n � 291, P � 0.0001), a difference that equates to a 24.7%
decrease in the T/S ratio. The results for the children
younger than 9 yr were very similar to those obtained in
the older children: the mean log T/S ratio in the obese
children (0.100, SE 0.011, n � 109) was again significantly
shorter than that in nonobese children (0.227, SE 0.028,
n � 31, P � 0.0002), a difference that equates to a 25.4%
decrease in the T/S ratio. Separate analysis of girls and
boys aged under/over 9 yr revealed no statistically signif-
icant gender differences in these subgroups.

Univariate analyses were performed, within each of the
obese and nonobese groups separately, to investigate the
potential contribution of selected variables to variation in
LTL (Table 2). Explanatory variables were log trans-
formed where necessary to ensure normality. As expected,
significant inverse associations between the log T/S ratio
and age were identified in both the cases and controls. The
log T/S ratio was also inversely associated with height and
weight in both groups.

The high level of multicolinearity between age, height,
and log weight meant that it was not possible to determine
their relative contributions to telomere length. Multivar-
iate analysis using all these variables, with LTL as the
dependent variable, resulted in a model with age as the sole
explanatory variable: adjusting log T/S values for any of
age, height, or log weight abolished associations between
LTL and the other two variables. The effect sizes of each
of these variables on LTL were not significantly different
in cases compared with controls. No improvement in the
model was achieved by including, for obese subjects, time

since onset of obesity as an additional parameter, because
this variable showed the same multicolinearity with age,
height, and log weight.

Although not quite reaching nominal statistical signif-
icance, there were discernible trends between longer telo-
mere length and increasing total cholesterol in the controls
and with increasing HDL-cholesterol in the cases. No as-
sociations between LTL and BMI Z-score or either systolic
or diastolic blood pressure were detected in either cohort
(Table 2).

Analysis of additional obesity-related traits in a subset
of 217 cases for which data on body fat content, age of
onset of obesity, and eating behaviors revealed no signif-
icant associations with LTL that were separate from the
effects of weight or height.

Discussion

We have demonstrated a highly significant inverse asso-
ciation between early-onset obesity and mean LTL in both
boys and girls in a large case-control study of French chil-
dren. Mean LTL in the obese cases is almost 25% less than
in the controls, and LTL declines with increasing age,
weight, and height in both groups, with comparable effect
sizes for all three variables in both cases and controls.

In adulthood, shorter leukocyte telomeres are associ-
ated with BMI in women (24) and waist to hip ratio in both
men and women (4). Furthermore, adipocytes from obese
adults have telomeres approximately 17% shorter than
those in adipocytes from nonobese adults (37). The mech-
anisms underlying the association between obesity and
short telomeres in adults are also unknown, although an
increase in oxidative stress and inflammation have both
been suggested as possible explanations (23).

Previous studies investigating telomere length and
childhood obesity proved inconclusive. Zannolli et al. (28)
found no difference in LTL between obese and nonobese
individuals in 53 Italian children, whereas Al-Attas et al.
(29) investigated 148 Arab children and found that mean
telomere length was shorter in obese boys compared with
lean boys but found no difference between obese and lean
girls. It is possible that the disparity between our findings
and those of previous workers is due to undetermined
genetic or nongenetic differences that exist between the
populations examined. However, it is more likely that the
increased statistical power afforded by the larger size of
our study (n � 793), and the severe phenotype of the cases
(above the 97th age and sex specific percentile of BMI),
allowed us to detect a highly significant association be-
tween telomere length and obesity in both boys and girls.

Interestingly, we found no significant difference be-
tween mean LTL in girls and boys in our study, which

TABLE 2. Univariate analysis of selected biochemical
and anthropometric variables

Variable

Nonobese Obese

R
P

value R
P

value
Age �0.17 0.002 �0.15 0.001
Height �0.15 0.008 �0.17 0.0002
Log weight �0.13 0.017 �0.16 0.0004
BMI Z-score 0.03 0.619 �0.02 0.723
Log systolic blood

pressure
�0.01 0.82 �0.08 0.131

Log diastolic blood
pressure

�0.01 0.849 0.02 0.739

Log cholesterol 0.10 0.068 �0.07 0.18
Log HDL-cholesterol 0.04 0.499 0.09 0.071

Significant P values shown in bold, whereas those approaching
significance are in italics. In both nonobese and obese children, age,
height, and log weight are inversely associated with mean telomere
length (log T/S ratio). Borderline significant associations are also
detected between log T/S ratio and log cholesterol levels in the
controls and log HDL-cholesterol levels in the cases.
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agrees with a previous report on LTL in newborns (2). This
implies that the difference observed in adulthood, men
having shorter mean leukocyte telomeres than women
(38), may be due to factors that exert their influence after,
rather than during, early childhood.

Despite evidence that childhood obesity contributes to
earlier onset of puberty (39), we found no evidence that this
factor influenced our results. In the absence of data on pu-
bertal stage, we subdivided our cohort into those younger
and older than 9 yr of age. We found that shorter LTL was
associated with obesity in both groups: in the children
youngerthan9yr,meantelomere length intheobesechildren
was 25.4% shorter than in the controls, whereas in the chil-
dren older than 9 yr, it was 24.7% shorter.

In agreement with numerous previous studies in both
adults and children, we found an inverse association be-
tween age and telomere length, within each of the case and
control cohorts. However, we also detected inverse asso-
ciations between LTL and height and weight. All of these
variables are indicators of body size in childhood, and
although it was not possible to determine the relative con-
tribution of each, this supports the hypothesis that telo-
mere length in childhood chronicles the expansion of the
hematopoietic stem and progenitor cell populations,
which in turn reflect body size (40).

The highly significant difference between telomere length
in obese and nonobese children may be partly or wholly due
to a general overgrowth compared with their normal-weight
peers of a similar chronological age. Although the mean age
of the obese children was almost 1 yr younger than the con-
trols, they were somewhat taller and their mean weight was
almost 80% greater (Table 1). Thus, the shorter mean LTL
of the obese children compared with the nonobese children
maysimplybedue toan increasedrateofhematopoietic stem
cell turnover. Consistent with this is the finding that no as-
sociation was observed in either cohort between BMI
Z-score and telomere length, indicating that the correlation
iswithabsolutebodysize, rather thansize relative toage-and
gender-matched peers.

Although the difference in body size is the most striking
phenotypic difference between our case and control cohorts,
the observed association with telomere length may nonethe-
less reflect some other aspect of obesity, such as circulating
lipid levels, or inflammation. There is evidence from a lon-
gitudinal study in adults that telomere length is positively
associated with HDL-cholesterol levels (3). The authors pro-
pose that this association might be explained by the antiox-
idantandantiinflammatoryeffectsofHDL-cholesterol,both
ofwhichmightslowleukocyte telomereattritionrates. Inour
study, levels of HDL-cholesterol were significantly lower in
the obese, compared with the nonobese children, and LTL in
obese children showed a discernible (although not quite sig-

nificant) positive correlation with HDL-cholesterol, each of
which is consistentwith thishypothesis.Conversely, another
potential explanation for the shorter telomeres in obese chil-
dren is inflammation (7), which would increase leukocyte
progenitor cell turnover.

Although shorter telomeres are associated with hyper-
tension in adults (16), we found no association between
blood pressure and LTL in either the nonobese or obese
cohort. This suggests that this trait is only a significant
predictor of telomere length in adulthood and not child-
hood. However, because ours was a case-control study
designed to test for differences between normal-weight
and obese children, it may have been underpowered to
detect associations between LTL and continuous traits
such as blood pressure and circulating lipids.

In conclusion, we have demonstrated that obese chil-
dren have telomeres that are substantially shorter than
those of nonobese controls of comparable age. Further
population-based studies in young cohorts are required to
identify the obesity-related traits that explain this obser-
vation and additionally to investigate the extent to which
this difference in telomere length extends into adulthood.
The fact that obese children have an apparent biological
age that is significantly greater than their chronological
age highlights the importance of intervention and also sup-
port for these individuals at the earliest opportunity to
minimize their risk of future disease.
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21. Meyre D, Delplanque J, Chèvre JC, Lecoeur C, Lobbens S, Gallina
S, Durand E, Vatin V, Degraeve F, Proença C, Gaget S, Körner A,
Kovacs P, Kiess W, Tichet J, Marre M, Hartikainen AL, Horber F,
Potoczna N, Hercberg S, Levy-Marchal C, Pattou F, Heude B,
Tauber M, McCarthy MI, Blakemore AI, Montpetit A, Polychro-
nakos C, Weill J, Coin LJ, Asher J, Elliott P, Järvelin MR, Visvikis-
Siest S, Balkau B, Sladek R, Balding D, Walley A, Dina C, Froguel
P 2009 Genome-wide association study for early-onset and morbid
adult obesity identifies three new risk loci in European populations.
Nat Genet 41:157–159

22. Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D,

Andersson J, Falchi M, Chen F, Andrieux J, Lobbens S, Delobel B,
Stutzmann F, El-Sayed Moustafa JS, Chèvre JC, Lecoeur C, Vatin V,
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