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REVIEW REVIEW

Linear chromosomes are “capped” at each end to avoid being rec-
ognized as double-strand breaks and subjected to DNA repair. 
Capping is achieved by a terminal nucleoprotein structure termed 
a telomere, which is composed of tandem arrays of the hexanu-
cleotide (5'-TTA GGG-3') repeat unit and the telomere-specific 
shelterin complex comprising the TRF1, TRF2, POT1, TIN2, 
TPP1 and RAP1 proteins.1 Integrity of the telomeric nucleopro-
tein complex is essential for chromosomal stability and therefore 
for genomic stability.

Telomeres lose their full capping function when there is insuf-
ficient telomeric DNA and/or incomplete shelterin binding, which 
results in a telomere-specific DNA damage response. This induces 
a p53-dependent cell cycle arrest known as senescence,2 when 
a threshold level of DNA damage response is reached.3 Despite 
inducing a DNA damage response, the telomeres of senescent cells 
appear to be in a functional state that is intermediate between 
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Telomeres consist of repetitive DNA and associated proteins 
that protect chromosome ends from illicit DNA repair. It is well 
known that telomeric DNA is progressively eroded during cell 
division, until telomeres become too short, and the cell stops 
dividing. There is a second mode of telomere shortening, 
however, which is a regulated form of telomere rapid 
deletion (TRD) termed telomere trimming that is reviewed 
here. Telomere trimming appears to involve resolution of 
recombination intermediate structures, which shorten the 
telomere by release of extrachromosomal telomeric DNA. This 
has been detected in human and in mouse cells and occurs 
both in somatic and germline cells, where it sets an upper limit 
on telomere length and contributes to a length equilibrium 
set-point in cells that have a telomere elongation mechanism. 
Telomere trimming thus represents an additional mechanism 
of telomere length control that contributes to normal telomere 
dynamics and cell proliferative potential.
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fully capped and fully uncapped, because they are capable of pre-
venting end-to-end fusion events.3 It may therefore be a misnomer 
to refer to them as “dysfunctional” at this stage. Cells defective in 
their responses to DNA damage are able to evade cellular senes-
cence and continue to divide until they reach crisis, when their 
telomeres become critically short and uncapped. At this point, 
telomeres become fusogenic, resulting in rounds of breakage-
fusion-bridge cycles, which manifest as chromosome rearrange-
ments and genomic instability.4

The Importance of Telomere Length Control

Telomere length ultimately dictates the proliferative capacity of a 
cell. For reasons described below, telomeres undergo steady attri-
tion during the proliferation of normal cells, which sets an upper 
limit on the number of times they can proliferate and thus protects 
against cancer. Inappropriate activation of a telomere lengthening 
mechanism and evasion of cellular senescence is vital for cellular 
immortalization (Fig. 1), which is one of the main hallmarks of 
cancer.5 Conversely, insufficient telomere length in somatic cells 
results in premature proliferative failure in specific tissues, which 
can cause potentially fatal conditions such as aplastic anemia or 
pulmonary fibrosis6,7 and possibly emphysema.8 It has also been 
demonstrated that interferon-stimulated gene 15 (ISG15) is regu-
lated by telomere length, raising the intriguing possibility that 
telomeres can be involved in the regulation of gene expression.9

The best-known telomere lengthening mechanism is the ribo-
nucleoprotein enzyme telomerase, which, in its active form, com-
prises two molecules each of the reverse transcriptase hTERT, the 
RNA template hTR encoded by the TERC gene and the associated 
protein subunit dyskerin encoded by the DKC1 gene.10 Lack of nor-
mal levels of telomerase activity resulting from mutations in TERT, 
TERC or DKC1 or in proteins involved in telomerase biogenesis 
(NHP2 or NOP10) or its recruitment to the telomere (TCAB1) 
result in the short telomere syndromes referred to above.11,12

Telomerase activity is upregulated inappropriately in the major-
ity of cancers.13 A smaller proportion of tumors, representing a broad 
spectrum of cancer types but predominantly from mesenchymal or 
neuroepithelial precursors, activate an alternative lengthening of 
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processes20 (Fig. 1). Telomere repeat synthesis can occur in nor-
mal human cells in response to increased proliferative require-
ments by the stringent control of telomerase. Telomerase is 
activated in the germline, early in embryogenesis, in progeni-
tor cells and in activated lymphocytes as part of the immune 
response. Telomeres progressively shorten in replicating cells as 
a result of the limitations of RNA-primed DNA synthesis of the 
lagging strand, known as the end-replication problem.21-23 The 
action of cellular nucleases also contributes to gradual telomere 
erosion.24,25 Thus, telomere attrition acts to limit the cellular pro-
liferative lifespan26 (Fig. 1).

Telomere trimming is a mechanistically distinct process of 
negative telomere length regulation, which results in the deletion 
of large segments of telomeric DNA27 (Fig. 2). Importantly, telo-
mere trimming is a regulated mechanism that does not produce 
telomere signal-free ends by FISH analysis and does not induce 
telomere dysfunction.27 For this reason, telomere trimming is 
compatible with continued cell growth and appears to play a role 
in normal telomere biology (Fig. 1). It is possible that telomere 
trimming is of equal importance to gradual telomere attrition and 
the de novo synthesis of telomeric DNA by telomerase or ALT.

The term telomere trimming was coined in response to a 
reviewer who requested a name for this process that would not 
be interpreted as meaning that the whole telomere is lost.27 The 
underlying mechanism appears to involve homologous recombi-
nation (HR)-mediated resolution of telomeric structures called 
t-loops. These structures are able to form, because telomeric 
DNA, although mostly double-stranded, terminates in a single-
stranded G-rich 3' overhang that is able to fold back on itself and 
invade the proximal duplex telomere repeats.25,28-31 At the point of 
insertion, a recombination intermediate is formed, and although 
this is generally stable, its resolution can result in sudden shorten-
ing equivalent to the length of the t-loop and generate extrachro-
mosomal telomeric DNA, which is predominantly detectable 
in the form of telomere circles (t-circles),27,32 (Fig. 2). Although 
some linear telomeric DNA is also likely to be generated by this 
process, t-circles are less prone to experimental artifacts and are, 
consequently, a more useful marker of telomere trimming.

Experimental Model Systems 
of Telomere Rapid Deletion

Regulated and coordinated decreases in telomere length were first 
observed during macronuclear development in the ciliates Euplotes 
crassus and Tetrahymena thermophila.33,34 Several years later, TRD 
events were identified and characterized in Saccharomyces cerevi-
siae, following expression of the telomere-binding protein Rap1 
containing a deletion mutation.35 Ultimately, this work by the 
Lustig group demonstrated that a mechanism of TRD, distinct 
from gradual telomere attrition, was able to reduce elongated telo-
meres in a single resolution event.36 Elegant studies involving the 
insertion of HaeIII restriction enzyme sites into yeast telomeres 
found no evidence of inter-telomeric movement, but a deletion/
retention pattern consistent with intra-telomeric deletion, which 
was dependent on wild-type telomere length.37 In this context, 
TRD is analogous to telomere trimming.

telomeres (ALT) mechanism.14 ALT cells use homologous recom-
bination (HR)-mediated replication of telomeric DNA to maintain 
their telomeres. ALT cells typically display very long and hetero-
geneous telomere lengths, whereas telomerase-positive cancer  
cells predominantly maintain substantially shorter telomeres.15-17

It is currently not known whether excessive telomere lengths 
are detrimental to cells. Long telomeres may simply enable 
increased cell proliferative capacity prior to telomere length-
mediated senescence. However, it can also be speculated that very 
long telomeres may become prone to replication slippage, stalled 
replication forks or the formation of secondary structures such 
as G-quadruplexes. Excessively long repeat tracts are also likely 
to impinge on cell cycle progression by presenting a replicative 
burden, which may slow down cell cycling and ultimately result 
in increased chromosome instability. It is possible that the short 
telomere lengths typical of telomerase-positive cancer cells fall 
below the threshold required for telomere trimming, and that 
this may allow the cancer cells a proliferative advantage.

Paradoxically, it is becoming increasingly clear that inad-
equate telomere length is associated with risk of cancer, including 
hematological malignancies, such as acute myeloid leukemia.18,19 
The mechanisms underlying risk of malignancy appear complex; 
however, it has been speculated that shorter telomere lengths may 
favor the acquisition of genomic instability and, thus, oncogen-
esis. Consequently, targeted manipulation of telomere mainte-
nance mechanisms not only provides a promising strategy for 
treating cancer, but in specific circumstance may also be useful 
for cancer prevention.

Telomere Length Regulation 
in Normal Mammalian Cells

In normal mammalian cells, telomere length is ultimately deter-
mined by the balance between lengthening and shortening 

Figure 1. Telomere length regulation in mammalian cells. Telomere 
length is subject to regulated rapid deletion events known as telomere 
trimming, gradual telomere attrition and elongation by activation of 
telomerase or ALT.
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electrophoresis has demonstrated that telomere length and the 
size of t-loops and t-circles correlate,31,43,44 consistent with the 
notion that t-circles are derived from t-loop deletions.

Telomere uncapping instigates substantial and catastrophic 
TRD events, sometimes involving the majority of the telomere 
and resulting in frequent signal-free ends and telomere dysfunc-
tion (Fig. 2). Despite mechanistic similarities, in this context, 
TRD events are distinct from regulated telomere trimming and 
are not compatible with continued cell growth. Expression of a 
mutant TRF2, TRF2ΔB, which lacks the basic domain required 
to bind to DNA four-way junctions but retains the ability to bind 
to the telomere and prevent telomere fusions,45 resulted in sudden 
catastrophic telomere deletion events, characterized by the onset 
of cellular senescence and a telomere DNA damage response.43 
TRD events occurred stochastically, were proportional to telo-
mere length and appeared to be post-replicative, with preferential 
deletion of the leading strand. Deletion products were visualized 
as t-circles and were dependent on the HR proteins XRCC3 and 
NBS1.43

TRD in yeast requires the recombination proteins Rad52, 
Mre11 and Rad50 and can be enhanced by mutations in hyper-
recombination protein Hpr1 and in the absence of yKu70.36-38 
Consequently, t-loop formation and subsequent resolution by 
HR has been implicated as the underlying mechanism.39 TRD is 
also responsible for the resetting of telomere length during yeast 
meiosis.40 Meiotic deletion occurs similarly to mitotic TRD by an 
intra-telomeric recombination pathway and is dependent on the 
meiotic telomere binding protein Ndj1p, which facilitates bou-
quet structure formation and homologous pairing.41

Following the comprehensive characterization of TRD in 
yeast, TRD has been found to occur in Arabidopsis thaliana42 as 
well as in mammalian cells, most notably in response to experi-
mentally induced telomere deprotection.43 Importantly, extra-
chromosomal t-circles were identified in these studies, providing 
evidence that HR-mediated resolution of the t-loop contributes 
to telomere-shortening events.43 T-circles specifically comprise 
telomeric repeats and lack subtelomeric sequences.43 Electron 
microscopy in conjunction with two-dimensional (2D) gel 

Figure 2. Distinct pathways of telomere rapid deletion (TRD) in mammalian cells. Highly regulated and moderate telomere trimming events occur in 
response to telomere elongation and are compatible with continued cell proliferation. Telomere uncapping causes catastrophic TRD, and a DNA dam-
age response and ultimately leads to cell cycle arrest. Stochastic TRD events occur at low frequency in response to unknown cellular triggers in cycling 
cell populations to induce senescence.
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elevated telomere sister-chromatid exchange events and were not 
permissive to copying of a telomere tag, which is perhaps the 
most definitive assay by which to determine ALT activity.27

It has been proposed that abundant t-circles may enable roll-
ing-circle amplification of telomeric DNA, and that this may 
contribute to ALT telomere length maintenance;56 however, to 
date, no direct experimental data exist to support this hypoth-
esis. Consequently, it seems most likely that the prominent 
t-circles observed in ALT cells are the product of telomere trim-
ming counteracting extensive recombination-mediated telomere 
lengthening that occurs in these cells. The detection of APB-like 
colocalizations between PML protein and telomeric DNA in cells 
undergoing telomere trimming in the absence of ALT implicates 
these nuclear foci as potential sites for intra-telomeric length reso-
lution by TRD, or for the accumulation and processing of extra-
chromosomal telomeric DNA.

Extrachromosomal t-circles are used as a marker of telomere 
trimming and are conventionally detected by 1D and 2D gel elec-
trophoresis techniques,54,57 which provide limited sensitivity. A 
sufficiently quantitative and reproducible alternative assay to ana-
lyze telomere trimming is currently lacking. Electron microscopy 
has been used to identify the existence of t-circles,44 although 
this technique is technically challenging and hard to quanti-
tate. Truncated telomeres have been observed by single telomere 
length analysis (STELA) at multiple telomeres in normal human 
fibroblasts, at high frequency in the male germline and to a lesser 
extent in human stem cell populations.58-60 This technique allows 
detailed analysis of individual telomere lengths but is unable to 
characterize deletion products. Future developments in the detec-
tion of telomere trimming events will undoubtedly improve our 
understanding of this mechanism.

It is also pertinent to distinguish the different extrachromo-
somal telomere DNA species. T-circles are open-circular and pre-
dominantly double-stranded entities, which contain nicks and, 
consequently, cannot undergo rolling-circle replication without 
prior fill-in processing. Partially single-stranded C-rich or G-rich 
closed circular telomeric DNA molecules (referred to as C- or 
G-circles, respectively) have also been identified, and C-circles 
are particularly abundant in ALT cells. Because these DNA spe-
cies are partly double stranded, they can be used as self-priming 
substrates for rolling-circle replication.61 C-circles are not gener-
ated by telomere trimming.61

Mechanistic Insights and Speculations Regarding 
Telomere Trimming under Normal Cellular 

Circumstances

Telomere trimming appears to be triggered by telomere length, 
and it is possible that shelterin binding could contribute to telo-
mere length sensing in this scenario. Human telomerase-positive 
cells maintain a balance between telomere loss and telomere 
elongation in part by negative feedback of telomere length on 
telomerase activity, achieved by the binding of TRF1 along the 
telomere tract.62-65 Elongation of telomeres by overexpression 
of exogenous telomerase results in a corresponding increase in 
telomere-bound TRF1 and TRF2.66 However, despite the in cis 

Several other functionally related proteins have been demon-
strated to play a role in t-circle generation. The origin recogni-
tion complex, ORC, localizes to telomere repeats and associates 
with TRF2 but not TRF2ΔB. Depletion of the ORC subunit 
ORC2 resulted in loss of telomeric DNA and an increase in dys-
functional telomeres and t-circle formation, comparable to the 
TRF2ΔB overexpression phenotype, implicating ORC recruit-
ment by TRF2 in t-loop stability.46 The Werner syndrome RecQ 
helicase, WRN, also interacts with TRF247,48 and is able to bind 
to Holliday junction (HJ) recombination intermediates. WRN 
is required for TRF2ΔB-mediated telomere shortening and also 
represses the formation of spontaneous t-circles, requiring both 
its exonuclease and helicase activities.49

Deletion of the NHEJ factor Ku86 in human somatic cells 
results in cell death and is accompanied by massive telomere loss 
in the form of t-circles, affecting leading and lagging strands 
equally.50 This is likely to be the result of decreased chromatin 
binding of TRF2.51 Inhibition of TRD by the Ku heterodi-
mer has also been demonstrated in A. thaliana and in yeast.38,52 
Extensively shortened telomeres and extrachromosomal telo-
meric DNA have also been observed in ataxia-telangiectasia (AT) 
mutated (ATM)-deficient mice and AT patients, suggesting a role 
for the ATM kinase in TRD.53 Consequently, proteins involved 
in telomere capping, t-loop stabilization and telomere length have 
all been functionally implicated in TRD.

Detection of Regulated Telomere Trimming 
in Mammalian Cells

Initial indications of a telomere trimming mechanism came 
from the detection of low levels of t-circles in human cell lines,43 
and, more recently, abrupt telomere shortening (ATS) was iden-
tified in normal human fibroblasts.54 We have demonstrated 
and characterized telomere trimming in normal human cells of 
both germline and somatic origin. T-circles were detected first 
in sperm DNA and second in response to telomerase activation 
and telomere lengthening in stimulated lymphocytes.32 In stim-
ulated lymphocytes, the disappearance of elongated telomeric 
products coincided with the appearance of t-circles. It remains 
to be determined whether telomere trimming also occurs in 
response to telomere lengthening in stem cell populations, which 
also activate telomerase to engage in increased proliferation. The 
detection of t-circles in the brain, liver, kidney and testes from 
Mus musculus castaneus and Mus musculus musculus mice indi-
cates that telomere trimming is conserved across mammalian 
species.32

Extrachromosomal t-circles were found to accumulate in 
telomerase-positive cancer cell lines following progressive telo-
mere lengthening by exogenous telomerase activity.27 T-circles 
were also prevalent in cells utilizing the ALT mechanism of 
telomere length maintenance.55 Other ALT markers also overlap 
with the telomere trimming phenotype, including the presence 
of long and heterogeneous telomere lengths and nuclear ALT-
associated PML bodies (APBs). Nevertheless, these mechanisms 
appear distinct.27 Telomerase-positive cells undergoing telomere 
trimming of artificially elongated telomeres did not display 
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by-product.32,73 Nevertheless, this unusual telomeric entity does 
not appear to instigate a DNA damage response during telomere 
trimming, further demonstrating the regulated nature of this 
mechanism.27

Potential Implications of Telomere Trimming

Critically short telomeres are recognized as DNA damage sites, 
triggering a DNA damage response and the onset of senescence.2 
Senescence is determined by the presence of a sufficient num-
ber of critically short telomeres, rather than the average telomere 
length.2,74,75 Over a decade ago, a theoretical model of TRD was 
proposed as the mechanism underlying stochastic cellular senes-
cence.76 TRD was proposed to occur through DNA recombi-
nation or nuclease digestion, causing rapid onset of senescence, 
referred to as sudden senescence syndrome (SSS).76 In support of 
this model, low levels of extrachromosomal t-circles have been 
identified in cycling fibroblast populations, indicative of TRD.54 
Further evidence has been provided by STELA of young and 
senescent human fibroblast cell populations, which identified 
large stochastic TRD events superimposed on progressive telo-
mere attrition that increased in frequency in senescent cells.77,78

The detection of TRD products in cycling and, more prev-
alently, in senescent cell types, implicates a dysregulated form 
of telomere trimming at shortened rather than overlengthened 
telomeres as an underlying mechanism of stochastic cellular 
senescence54,77 (Fig. 2). Critical TRD events are likely to trigger 
a DNA damage response. The accumulation of cellular damage 
will eventually exceed tenability,3 and it can be speculated that 
TRD may act in specific cells as a programmed response to cel-
lular signals such as DNA damage or viral assault, to cause cell 
cycle exit by rapid and critical telomere shortening. Similarities 
between senescence-associated TRD and TRD following arti-
ficially induced telomere uncapping indicate that telomere 
uncapping may provide a potential trigger for stochastic cellu-
lar senescence. More globally, this may prevent the detrimental 
accumulation of tumorigenic mutations, viral infections, or the 
persistence of overlengthened telomeres.

Mechanistic insights into both regulated telomere trimming 
in the absence of DNA damage and stochastic telomere deletion 
events, which result in a rapid DNA damage response and cell 
cycle exit, raise the possibility that telomere trimming could be 
exploited for therapeutic purposes. First, TRD has the potential 
to be used in cancer cells to rapidly induce telomere shortening 
and thus telomere length-mediated cell cycle exit. Second, the 
telomere length set-point could be manipulated in both cancer 
cells and in patients suffering from premature aging disorders or 
short telomere syndromes to control cell proliferative capacity. It 
is possible that single nucleotide polymorphisms (SNPs) in genes 
involved in telomere trimming may affect the telomere length 
set-point in different individuals. Mutations in these genes may 
be an additional underlying cause of short telomere syndromes. 
In addition, cancer cells with uncharacteristically long telomeres, 
such as HeLa1.2.11,31 may have altered expression of telomere 
trimming mechanistic factors and may provide further insight 
into length regulation processes.

regulation of telomerase extension, it is currently unclear whether 
binding of the shelterin complex can similarly regulate telomere 
length by telomere trimming.

Formation and resolution of the t-loop structure is also an 
important mechanistic component of telomere trimming. TRF2 
is able to enhance strand invasion by inducing DNA untwisting 
and displays a high affinity for telomere branched or chickenfoot 
structures.67,68 TRF2 stimulates the formation and prevents the 
resolution of telomeric HJs that form at the base of the t-loop, 
thus stabilizing the telomere secondary structure.68 Formation of 
the t-loop intermediate is essential for its subsequent resolution, 
which involves the HR proteins XRCC3 and NBS1.43,69 We have 
shown that XRCC3 is required for the generation of t-circles in 
cells undergoing telomere trimming, and that in its absence, telo-
meres are able to further elongate, thus implicating intra-telo-
meric HR as the underlying mechanism.32

The abundance of t-circles in cells undergoing telomere trim-
ming raises questions as to the functional significance and pro-
cessing of these by-products. T-circles appear to be relatively 
stable but are unable to self-replicate, meaning that inhibition 
of telomere trimming results in dilution of t-circles with each 
successive cell division.32 It is likely that extrachromosomal telo-
meric DNA is degraded or processed by the cell, but the molecu-
lar details of t-circle metabolism are currently unknown. This 
also raises the intriguing possibility that t-circles may fulfil a sig-
naling role, potentially providing feedback control of telomerase 
activity.

Additional mechanistic components of telomere trimming 
encompass the cell signaling pathways that are likely to be 
involved in the recognition of overlengthened telomeres and 
the recruitment of processing factors, for instance HR proteins. 
Deleted telomere trimming products were identified as extra-
chromosomal doublets as well as single signals in metaphase 
cells.27 This implies that the telomere deletion event takes place 
during G

2
/M of the cell cycle, after DNA synthesis, but prior 

to sister-chromatid separation, when the two sister-chromatids 
remain associated with cohesins. It is therefore possible that 
telomere length is subject to G

2
/M checkpoint control. Short or 

uncapped telomeres are subject to checkpoint control, initiating 
ATM-mediated phosphorylation of the G

2
/M checkpoint kinase, 

Chk2 and induction of replicative senescence through the activa-
tion of p53.70 However, little is known regarding the downstream 
cellular responses to overlengthened telomeres. In the absence 
of DNA damage, TRF2 has been shown to physically interact 
with Chk2 to inhibit its activation,71 and further analysis of this 
association may identify additional regulatory factors underlying 
telomere trimming.

Telomere trimming generates 5' single-stranded C-rich 
telomeric DNA at the chromosome termini.27,32 Similar telo-
meric overhangs have also been identified in the nematode 
Caenorhabditis elegans and at low levels in human and mouse 
telomeres.72,73 C-rich overhangs are prevalent in ALT cells and 
appear to be a mark of both intra-telomeric HR by telomere 
trimming as well as ALT-mediated HR, although it is cur-
rently unclear whether ss C-rich telomeric DNA is of mecha-
nistic significance or occurs as a recombination intermediate or 
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The mechanistic details underlying telomere trimming remain 
largely elusive. Nevertheless, HR-mediated resolution of the ter-
minal t-loop structure represents a conserved component and in 
human cells involves the HR protein XRCC3. Further character-
ization of telomere trimming will provide intriguing possibilities 
for the manipulation of cell proliferation through modulation of 
telomere length.
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Conclusion

Telomere trimming is a conserved mechanism of rapid telomere 
length resolution that represents an additional factor of telomere 
length control, alongside gradual telomere attrition and activa-
tion of a telomere maintenance mechanism. Telomere trimming 
is well-regulated, compatible with continued cell growth and 
takes place in the absence of a DNA damage response. Telomere 
trimming can be distinguished from aberrant TRD, which, in 
contrast, triggers a DNA damage response and ultimately initi-
ates cell cycle arrest.
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