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The progressive increase in the elderly population worldwide

has resulted in higher numbers of individuals affected by age-

associated diseases, such as neurodegenerative and heart

diseases, metabolic impairment, or cancer, with the

subsequent burden for national health systems. Therapeutic

interventions aimed to increase the quality of life at advanced

age are visualized as important demands for the future, both at

the level of individuals and society. Novel advances in

telomerase function from several independent laboratories

have resulted in potential new therapeutic strategies which

appear as promising new venues to prevent cellular and tissue

dysfunction and organismal decline, thereby increasing the so-

called ‘‘health span’’. Here, we analyze these recent advances.
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Aging as the cause of disease
Aging, previously though has an unmodifiable trait, is

nowadays viewed as a dynamic process. Furthermore,

aging is currently seen as a causative factor for tissue

dysfunction and increased risk for developing various age-

associated diseases, including cancer. This highlights the

importance of understanding the molecular and genetic

causes of aging for the developed world, which is experi-

encing a dramatic increase in the elderly population [1].

In particular, a better understanding of how aging results

in tissue dysfunction and/or cancer and how we can

circumvent aging-associated decline are important ques-

tions at the present time. It has been demonstrated that

aging could be modulated and respond to several bio-

logical pathways [2]. A number of these pathways are

conserved in different species, demonstrating that aging

can involve common cellular processes, which are con-

served over evolution. In particular, pathways involved in

genome stability, nutrient sensing, oxidative damage
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balance, and growth, seem to be central in aging modu-

lation [2,3]. In this review, we will focus on the relatively

recent notion that aging is produced by accumulation of

DNA damage associated with cell division. In particular,

we will discuss recent advances for health improvement

in mammals (in particular laboratory mice), based on

prevention of the accumulation of critically short telo-

meres, a particularly deleterious type of DNA damage

which induces a persistent DNA damage response

(DDR), leading to cell death and senescence at the

cellular level, and to loss of regenerative capacity of

tissues at the organismal level [4–6]. This review will

examine what is known on the historical role of telomer-

ase in aging, paying special attention to recent works

which undoubtedly demonstrate that aging can be actu-

ally reversed (and not only retarded) through telomerase

re-expression.

Telomerase, DNA damage, and aging
Tissue degeneration occurs in long-lived organisms. The

accumulation of dysfunctional cells, together with a lim-

ited regenerative capacity of tissues, is thought to deter-

mine the age-related decline of body organs [7,8] and, in

some situations, settle a basis for cancer progression [9].

Dysfunctional cells, usually characterized by the pre-

sence of short telomeres, are a barrier for tumor pro-

gression when presenting an intact DNA damage

response which directs cells for senescence or cell death

[8,10,11], although recent evidence demonstrated that

transient telomere dysfunction per se could promote chro-

mosomal instability and carcinogenesis in telomerase-

proficient mice [12]. If DNA damage response barriers

are bypassed (for instance through deletion of p53 [11])

short telomere cells resume and accelerate transformation

phenotypes. In this scenario, re-activation of telomerase

further enables full malignancy [13].

Therapies that prevent the appearance or that decrease

the number of damaged cells are therefore viewed as

potentially effective in slowing the aging progression. In

this regard, increased gene dose of tumor suppressor

genes that eliminate damage cells from the organism

through apoptosis and senescence such as p53 and p16

are known to increase life span [14,15] furthermore,

clearance of senescent cells from already-adult organisms

also delays aging, thus confirming the involvement of

damaged cells in tissue dysfunction [16��]. Similarly,

prevention of metabolic damage also increases health

span, as recently shown for SIRT1 and PTEN gain of

function mouse models [17,18�,19�]. Interestingly, a link
 extending health span and longevity, Curr Opin Cell Biol (2012), http://dx.doi.org/10.1016/
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between telomeres and mitochondrial function has been

also proposed [20��,21��]. In particular, aging provoked by

telomere-dysfunction leads to changes in key metabolic

genes that involve a functional p53 and are characterized

by a repression of PGC-1a. In turn, telomerase re-acti-

vation in old wild-type mice, results in increased PGC-1a

levels [21��]. These metabolic changes associated with

telomere dysfunction could potentially synergize with the

DNA damage response triggered by short telomeres and

contribute to senescence and/or apoptosis, and the event-

ual organismal failure associated with the aging process.

Here we will focus in strategies aimed to decrease the

accumulation of persistent DNA damage associated with

short/dysfunctional telomeres by using telomerase reac-

tivation strategies, which has been extensively linked to

organismal aging [4,22,23].

Telomerase phenotypes
Telomerase is a multiprotein complex encompassing a

reverse transcriptase catalytic subunit (Tert) and an

associated RNA component (Terc) [24]. Telomerase adds

DNA repeats (TTAGGG in mammals) to chromosome

ends, thereby counteracting telomere shortening associ-

ated with DNA replication (the so-called end-replication

problem) or to DNA degrading activities [25–28]. Animal

models with mutations in telomerase or telomere-associ-

ated proteins (shelterin) have been instrumental to unveil

the role of telomeres in cancer and aging [4–6,22,23,29–
33]. In particular, knockout mice for Tert or Terc with

critically short telomeres are characterized by an

increased incidence of age-related diseases and prema-

ture tissue degeneration which mostly, but not only,

affects tissues with elevated cellular turnover such as

the bone marrow or the gastrointestinal system [34]. In

this regard, a role for telomerase and telomere integrity in

stem cell functionality has been shown for different adult

stem cell niches, including the skin and the bone marrow

[29,35–38]. In particular, some adult stem cell compart-

ments are telomerase positive and present longer telo-

meres than the surrounding tissues [37,39,40]. Further

supporting a role for stem cells in tissue functionality,

mice with mutations directly affecting the pools of stem

cells are characterized by accelerated aging [41]. Late

generation Tert or Terc knockout mice present a

decrease in mean telomere length and a higher percen-

tage of short telomeres in several organs (including the

pools of stem cells), which correlate with an incapacity of

tissues to regenerate and result, ultimately, in an accel-

erated tissue degeneration and a concomitant decrease of

the lifespan [5,6,42]. These seminal studies characteriz-

ing telomerase deficient mice have placed telomeres and

telomerase as key elements for organismal aging. Further

supporting it, there is recent evidence demonstrating that

telomere size measured early in life is a bona fide predictor

of lifespan in birds [43�], and telomere dynamics (in

particular, the rate of increase of short telomeres) sim-

ilarly correlate with lifespan of laboratory mice [56].
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Anti-aging role of telomerase
Telomerase constitutive expression by using mouse

transgenesis in adult tissues has pinpointed a role for

telomerase in tissue fitness and prevention of aging,

although at the expense of an slightly increased incidence

of cancer [22,44,45]. Importantly, when canceling the

increased cancer incidence associated with constitutive

transgenic telomerase expression by generating telomer-

ase transgenic mice in a cancer resistant background

owing to increase gene dosage of tumors suppressor genes

[p16, Arf and p53], this resulted in an improved extension

of lifespan of 43% when comparing to the corresponding

Wild-type (WT) mice [22].

The cancer promoting activity of telomerase observed in

the transgenic mouse models, however, is not apparent

when telomerase is re-activated late in life. In particular,

we have recently shown by using a gene therapy strategy

with non-integrative adeno associated virus (AAV), that

re-activation of telomerase in adult or old mice results in

delayed aging and significant lifespan extension in the

absence of increased cancer susceptibility [21��]. A single

telomerase (TERT) treatment of WT mice with these

vectors was sufficient to rescue the age-dependent

decline and to delay normal mouse physiological aging

(Figure 1). In this experimental setting, median lifespan

was extended by up to 24% in 1-year-old mice, and by

13% in animals of 2 years of age. This study confirms that

telomerase expression, by means of a gene therapy, could

be considered a feasible approach to extend lifespan

without increasing cancer incidence. Old mice treated

with TERT showed a better skin and metabolic fitness

and less bone loss after treatment, which are well charac-

terized indicators of aging progression. Moreover, TERT-

treated mice showed an improved age-related impair-

ment of balance and coordination and interestingly, a

tendency for memory improvement. Telomerase has

been proposed to have telomere-independent roles (inde-

pendent of its catalytic activity) as a cofactor on the

promoter of Wnt targeted genes [46], although questions

have been raised about the relevance of this activation

[42,47]. In this regard, when mice were treated with a

catalytically dead TERT (TERT-DN [48]) the beneficial

effects of TERT could not be reproduced and longevity

was not increased, demonstrating that healthspan ameli-

oration requires telomerase reverse transcriptase activity

[21].

Importantly, the safety of this type of strategy is illus-

trated by the fact that adult mice expressing TERT did

not develop more cancer. This could be related to the fact

that AAV vectors are non-integrative, leading to a loss of

TERT expression in highly proliferating cells or tissues,

such as cancer cells. Other explanation could be the fact

that AAV preferentially targets post-mitotic cells from

peripheral tissues (of adult mice in that case), which are

considered more refractory to cancer than the highly
 extending health span and longevity, Curr Opin Cell Biol (2012), http://dx.doi.org/10.1016/
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Figure 1

Current Opinion in Cell Biology

Telomerase
re-expression

Aging

Short dysfunctional telomeres

Degenerative pathologies

(1) Rescue of short telomeres

(3) Increased lifespan

(2) Increased health-span: brain, heart,
bone density, muscular strength, metabolic
fitness

Rescue of age-dependent tissue degeneration in adult mice. Therapies involving telomerase expression in adult tissues have demonstrated a potential

impact in rescuing of age-associated degenerative pathologies [21,49��]. Extension of short telomeres is one of the outcomes, but we cannot dismiss

novel roles for telomerase in distinct networks [55].
proliferative tissues. In this regard, telomerase re-intro-

duction in an accelerated model of aging involving accel-

erated telomerase loss (G4TERT�ER model) rescues the

‘‘aging-phenotype’’ [49��] without increasing cancer inci-

dence. This could be related to the fact that cells lacking

telomerase are resistant to cancer initiation [50], mimick-

ing the tumor suppressor situation and, somehow, can

preserve this characteristic after a telomerase pulse, even

in the presence of a higher genomic instability [49��].
These studies validate that telomerase could play import-

ant roles in tissue regeneration of adult organisms and are

a proof-of-principle that aging can be reversed and

retarded. Moreover, normal aging comprises similar

changes to those observed in aging produced by acceler-

ated telomere shortening further linking telomere biology

to the aging process. Novel therapeutic strategies invol-

ving telomerase expression could unveil potential mech-

anisms against tissue deterioration.

Chemical activators of telomerase are promising strat-

egies nowadays. Some telomerase activators were

assessed in the literature. TA-65, a single chemical com-

pound extracted from Astragalus membranaceus, was shown

to activate telomerase in vitro and in vivo [51,52�]. Adult

mice supplemented with this compound presented an

improved healthspan, in particular at the metabolic level.

Previously (to the study in mice), data in humans demon-

strated a better dynamics of the immune system (CD8+ T

lymphocytes) from HIV-infected humans [51] and a
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similar increase in health-span of aged healthy costumers

[53]. Recently, new compounds activators of telomerase

have been described, for instance a novel telomerase

activator (AGS-499) was demonstrated to play neuropro-

tective effects after N-methyl-d-aspartate (NMDA) treat-

ment in mice and delayed the progression of amyotrophic

lateral sclerosis (ALS) in SOD1 transgenic mice increas-

ing their survival, further supporting a role for telomerase

in tissue functionality [54�].

These new findings open a new door in aging research

and degenerative healing. The modulation of telomerase

and/or its associated ‘‘aging-network’’ [55] in adult tissues

establishes an important basis for aging research and

demonstrates that age-associated degeneration is a poten-

tial target of biomedical intervention. Further studies; in

particular long-term follow ups, should be carried to

assess adverse effects and to discriminate changes at

the tissue-level.

Perspectives for a healthy life
The increase in the worldwide life expectancy was

accompanied by intensification in age-associated dis-

eases. Characterization of biomarkers and modulation

of different pathways are candidates for a faster charac-

terization of disease and discovery of novel therapeutics,

respectively. In this aspect telomerase has been recently

scrutinized as an anti-aging factor. Several independent

works demonstrated that telomerase expression through
 extending health span and longevity, Curr Opin Cell Biol (2012), http://dx.doi.org/10.1016/
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genetic modifications, viral delivery or chemical acti-

vation result in a significant rescue of age-related path-

ologies. These new results are exciting however

additional efforts will be needed to translate these find-

ings into actual therapies. This opens an unprecedented

door for anti-aging research.
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