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Abstract

The model we propose to explain the links between atherosclerosis and
telomere dynamics (birth telomere length and its age-dependent short-
ening) in leukocytes takes cues from three facts: atherosclerosis is a
disease of the vascular endothelium; the hematopoietic system and the
vascular endothelium share a common embryonic origin; interindivid-
ual variation in leukocyte telomere length (L'TL) in the general popu-
lation has a genetic explanation. The model posits that LTL dynamics
mirror telomere dynamics in hematopoietic stem cells (HSCs), where
telomere length is an index of HSC reserves. Diminished HSC reserves
at birth, their accelerated attrition rate afterward, or both are are re-
flected in shortened L'TL during adulthood—a phenomenon that con-
fers increased risk for atherosclerosis. We explain how telomere length
in HSCs serves as both a biomarker of atherosclerosis and a determi-
nant of its development. Our model comes down to this proposition:
Shortened L'TL predicts increased atherosclerotic risk because the inju-
rious component of atherosclerosis exceeds the repair capacity of HSC
reserves, which largely depend on HSC telomere length.
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THE TELOMERE “CLOCK”

Telomeres are the TTAGGG nucleotide re-
peats at the ends of mammalian chromosomes,
and they progressively shorten with each repli-
cation of somatic cells. The metaphor of telo-
meres as a clock dominates the tale of telomeres
and atherosclerosis. The telomere “clock” does
not chronicle time but rather cell replication.
Furthermore, in cultured human somatic cells,
the clock not only records replication, it also
triggers an irreversible growth arrest. Thus, in
vitro, telomere length is both a biomarker of
replicative history and a determinant of replica-
tive potential. Without a doubt, the intrinsic
counting mechanism of the telomere clock also
registers replication of human somatic cells in
vivo. The lingering puzzle that is of great in-
terest to the medical community is whether
the telomere clock, expressed in age-related
telomere shortening, is an epiphenomenon of
atherosclerosis or an active player in it. That
question particularly applies to hematopoietic
stem cells (HSCs), given that epidemiological
studies have linked leukocyte telomere length
(L'TL) with atherosclerosis.

The model we propose to explain the
links between atherosclerosis and telomere
dynamics (birth telomere length and its age-
dependent shortening) in leukocytes takes cues
from () the fact that atherosclerosis is a disease
of the vascular endothelium, (b)) the common
embryonic origin of the hematopoietic system
and the vascular endothelium, and (¢) genes
that explain interindividual variation in LTL
in the general population. The model posits
that LTL dynamics mirror telomere dynamics
in HSCs, where telomere length is an index
of HSC reserves. Diminished HSC reserves at
birth, their accelerated attrition rate afterward,
or both are expressed in the form of shortened
LTL during adulthood—a phenomenon that
confers increased risk for atherosclerosis. This
risk largely relates to the declining ability of
HSC reserves to sustain a sufficient circulating
number of adequately functioning endothelial
progenitor cells (EPCs), which are derived
from the bone marrow and circulate in the

Aviv e Levy

blood, to mend the vascular endothelium. In
addition, an augmented rate of LTL shortening
indicates an increased burden of oxidative stress
and inflammation, which not only marks the
atherosclerotic process but also taxes the HSC
reserves. In this way, telomere length in HSCs is
both a biomarker of atherosclerosis and a deter-
minant of its development. Our model comes
down to this proposition: If shortened LTL
predicts increased atherosclerotic risk—and
the evidence suggests that it does—it is because
the injurious component of atherosclerosis
exceeds the repair capacity of HSC reserves,
which largely depend on HSC telomere length.

This article on the biological meaning of
the nexus between LTL and atherosclerosis
primarily draws on studies in humans. Excel-
lent general reviews have addressed telomere
biology in the context of monogenic diseases,
atherosclerosis, and aging (1-4). Because this
review reflects our own perspective on the
LTL-atherosclerosis connection, we were se-
lective in our citations and extend our apology
to investigators in the telomere and atheroscle-
rosis fields whose meritorious works are not
cited.

TELOMERE BIOLOGY IN
CULTURED HUMAN CELLS

Telomeres progressively shorten in proliferat-
ing cells because of two main factors: the “end
replication problem” and oxidative stress. The
end replication problem stems from the inabil-
ity of DNA polymerase to replicate the lagging
DNA strand to its terminus (5), which causes a
small and fixed telomere shortening with each
replication. In addition, because of the sensitiv-
ity of the G triplets of the TTAGGG telomere
repeats to the superoxide radical, telomeres are
exquisitely sensitive to oxidative stress. Accord-
ingly, increased oxidative stress causes a greater
loss of telomere repeats per cell replication
(6). Replication of cultured somatic cells ulti-
mately comes to a halt in two stages—M]1 and
M2. M1, known as replicative senescence, is
triggered when the shortest telomere among
the telomeres of all chromosomes attains a
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critical threshold (7). At that stage, the telo-
mere T-loop (8)—a structure that comprises
the telomere repeats and telomere binding
proteins—becomes unraveled, leading to the
exposure of the telomeric terminus. The cellu-
lar machinery recognizes the exposed terminus
as a double strand break that activates DNA
damage checkpoints, including p16™¥*/pRB
and p53, and it stops replication. On rare oc-
casions, a subset of cells continues to replicate
until M2, which is marked by cycles of chromo-
somal fusion and breakage, leading to apoptosis
).

M1 and M2 can be thwarted by telomerase,
a reverse transcriptase that adds back telomere
repeats onto the chromosomes (10). The en-
zyme comprises two major components: a cat-
alytic (protein) subunit (TERT) and an RNA
template (TERC). In addition, telomere bind-
ing proteins maintain telomeres by stabilizing
the T-loop and regulating accessibility of the
telomeric terminus to telomerase.

IN VIVO HUMAN
TELOMERE DYNAMICS

Telomere Shortening After Birth

Robust telomerase activity is expressed in fetal
tissues during the first trimester (11), with
resultant synchronization of telomere length
in all somatic cells. During extrauterine life,
telomerase activity is repressed in somatic
cells, including HSCs (12), but it is strongly
expressed in the germ line (11) and in cancers
(13). Telomere length in somatic tissues is
longest at birth. From then on, telomeres
progressively shorten with age in replicating
somatic cells. In postmitotic cells such as
skeletal muscle cells, which divide infrequently
(unless injured) during extrauterine life, there
appears to be only little age-dependent telo-
mere shortening (14). If replicative senescence
figures in aging-related diseases, it most likely
occurs in highly proliferative somatic tissues.
And the most proliferative tissue in humans
and other mammals is the hematopoietic
system.

HSCs experience the highest rate of
telomere attrition during childhood and ado-
lescence, as they divide to expand the HSC and
hematopoietic progenitor cell (HPC) pools in
tandem with the growing soma (15). During
adulthood, HSC replication primarily accom-
modates the tremendous turnover rate of blood
cells. Persons suffering from catastrophic (rare)
mutations in telomere maintenance genes (1)
are susceptible to aplastic anemia because the
HSC:s of these patients might be the first cells
to run out of telomeres early in life. How-
ever, in the population at large, a less drastic
interindividual variation in HSC reserves,
which are contingent on telomere dynamics,
is probably expressed in two ways: variation
among individuals in the manifestations of
aging-related immune senescence (16), and
age-dependent decline in the numbers of
adequately functioning EPCs.

HSC Telomere Dynamics
and Atherosclerosis

By virtue of its anatomy, the vascular endothe-
lium interacts with elements on its luminal and
counter-luminal sides, playing key roles not
only in the biology of the vasculature but also
in that of the blood. Importantly, the vascular
endothelium is where atherosclerosis evolves.

Based on a few autopsy cases, it was proposed
that telomere shortening in the endothelium
and consequently endothelial cell senescence
contribute to the atherosclerotic process in
the coronary arteries (17). Given the relatively
low replicative index of endothelial cells (and
smooth muscle cells) in the vascular wall, it
is unlikely that these cells would experience
senescence from telomere shortening during
the human lifespan. If telomere dynamics are
involved in atherosclerosis, their main impact
might be not on native endothelial cells in the
vascular wall but on EPCs, which originate
from the HSC pool. Telomere dynamics in
this pool are mirrored in LTL dynamics.

LTL reflects the mean length of telomeres
in all leukocyte lineages, which show some
variation in telomere dynamics within the
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individual. For instance, lymphocytes display
a faster rate of age-dependent telomere short-
ening than granulocytes (18), and memory
CD4* T lymphocytes have shorter telomeres
than naive ones (19). However, the variation in
telomere length among subsets of leukocytes
within an individual is small compared to the
interindividual variation in L'TL (20).

Atherosclerosis is driven in part by chronic,
low-grade inflammation (21) and oxidative
stress (22). The conventional view about the
LTL-atherosclerosis connection is as follows:
over many years, an increased tempo of HSC
replication to accommodate the inflammatory
response and a greater loss of telomere repeats
per HSC replication due to oxidative stress
would bring about a shorter L'TL in individuals
with atherosclerosis than in their peers. Appeal-
ing as it may be, the view that shortened LTL
in atherosclerosis primarily stems from accel-
erated telomere shortening in HSCs overlooks
the 4-6-kb range in LTL among newborns (23,
24). Birth L'TL is hence a major determinant of
LTL at any age, as persons who are born with
short (or long) LTL are likely to display short
(or long) LTL later in life (14). Thus, a quick-
ened pace of LTL shortening is unlikely to be
the sole explanation for the shortened LTL in
atherosclerosis.

ATHEROSCLEROSIS AND EPCs:
POTENTIAL ROLE OF HSC
TELOMERE DYNAMICS

LTL may be tied to atherosclerosis not only
through oxidative stress and inflammation, but
also via the vital repair countermeasures that
attenuate endothelial damage. EPCs are one of
these essential countermeasures. Originating
from the HSC pool, EPCs are engaged in main-
taining the integrity of the vascular endothe-
lium, but their number and proliferative poten-
tial, expressed in colony-forming units (CFUs),
are low in atherosclerosis. The numbers of
circulating EPCs, their CFUs, or both are also
diminished in older persons (25), in individuals
with insulin resistance (26) or sedentary lifestyle
(27), in smokers (28), and in men more than in

Aviv e Levy

women (29). These conditions are the same as
those associated with a shortened L'TL. Not
only older persons and individuals with clinical
manifestations of atherosclerosis display short-
ened L'TL (2). Those at risk for atherosclerosis
after adjustment for age also show shortened
LTL, including men (30-33), cigarette smok-
ers (30, 33), people with insulin resistance (34,
35), and those with a sedentary lifestyle (36).

In atherosclerosis, the partial exhaustion of
the HSC reserves—indicated by diminished
numbers of EPCs, a decline in their CFUs, or
both—apparently relates to mechanisms that
govern telomere shortening (37-39). More-
over, insights into telomere dynamics in HSC
reserves and their relation to atherosclerosis
have been gained from monitoring recipients
of hematopoietic stem cell transplantation
(HSCT). In general, the survival of HSCT
recipients is inversely related to the donor’s
age (40). Moreover, these recipients experience
substantial LTL shortening (41, 42), which evi-
dently occurs because of extensive proliferation
of donor-derived HSC:s to fill the bone marrow
niches of the recipients and produce more
committed HPCs. Importantly, recipients of
HSCT from donors older than 18 years display
a shorter LTL than recipients of HSCT from
younger donors (42). Recipients of HSCT
also show a decline in myeloid CFUs (43).
In light of these observations and our model,
it is not surprising that long-term survivors
of HSCT show not only substantial LTL
shortening (44) but also a heightened risk of
atherosclerosis (45). HSC telomere dynamics
might also explain the disappointing out-
comes of patients with myocardial infarction
treated with autologous bone marrow—derived
cells (46). These outcomes do not, however,
challenge the link between telomeres and
EPCs in atherosclerosis. If atherosclerosis is
marked by diminished HSC reserves, bone
marrow—derived cells of patients with severe
atherosclerosis are likely to display diminished
replication potential, which would limit their
effectiveness.

It is noteworthy that recent studies have
questioned the criteria that have been used to
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characterize EPCs and their exact role in vas-
cular repair. Some investigators have suggested
that EPCs are largely bone-marrow-derived
myeloid cells that secrete paracrine factors
and stimulate vascular repair and angiogenesis
through the activation of nearby cells (47-50).
But regardless of the true nature of EPCs, the
evidence points to their engagement in vascular
repair, the effectiveness of which depends on
HSC telomere length, as expressed in L'TL.
And so we return to the question of whether
telomere length is merely a biomarker of
atherosclerosis, an active player in its pathogen-
esis, or both. Might it be that shortened LTL,
regardless of its etiology, confers diminished
HSC reserves, expressed in lower numbers or
reduced function of EPCs? Such a paradigm
would integrate and reconcile findings of wide
interindividual variation in birth L'TL with
the relatively narrow differences in mean L'TL
between persons with atherosclerosis and those
without it. Birth L'TL would thus reflect the
initial size of the HSC reserves, and changes
in LTL after birth due to growth (15) and the
accruing burden of oxidative stress and inflam-
mation would track the contraction of these re-
serves. Moreover, the absolute telomere length
in HSCs might be a determinant of the ability
of the HSC pool to generate adequate numbers
of EPCs that are dispatched by the bone mar-
row to the site of endothelial injury to engage
in mending the vascular endothelium. As such,
telomere dynamics in HSCs, mirrored in their
proxies, the leukocytes, may conform to the be-
havior of telomeres in cultured somatic cells by
being both an index of replicative history and
a determinant of future replicative potential.
It is not just that the conventional model
linking L'TL with atherosclerosis via oxidative
stress and inflammation is incomplete. The
model ignores the common embryonic precur-
sor of vascular endothelial cells and blood cells,
referred to as the hemogenic endothelium
(51). This multipotent precursor gives rise
not only to the endothelium but also to HSCs
(52). Because EPCs share their embryonic
and perhaps postembryonic history with
HSCs, their telomere lengths and hence their

endothelial repair capacity might be defined
by their common origin. From the perspective
of telomere biology, atherosclerosis and the
aging of the vasculature might then be better
understood when we consider the hematopoi-
etic system and the vascular endothelium as a
single entity—the “hemothelium.”

LTL-REGULATING GENES AND
THEIR POTENTIAL ROLE IN
ATHEROSCLEROSIS

Because LTL is heritable, variant genes may
not only cause rare monogenic diseases (1) but
also contribute to interindividual variation in
LTL in the general population. Theoretically,
LTL-regulating genes might belong to two ma-
jor categories: genes that are directly involved
in telomere maintenance and those whose func-
tion impacts HSC replication kinetics, which
would ultimately affect LTL. Recent genome-
wide association studies (GWAS) of LTL sup-
port this supposition by discovering loci of
LTL-regulating genes (53, 54). These loci in-
clude the telomerase RNA conponent (TERC),
oligonucleotide/oligosaccharide-binding  fold
containing 1 (OBFCI), and the chemokine (C-
X-C motif) receptor 4 gene (CXCR4).

TERC, as indicated above, is the reverse
transcriptase component of telomerase, and
OBFC1I is the human homolog of yeast Sml,
which negatively regulates telomerase action
on telomeres (55). Moreover, OBFCI inter-
acts and colocalizes with telomeric proteins in
human cells, indicating that OBFC1 regulates
telomere length and/or function in humans.
Whereas TERC and OBFCI are telomere-
maintenance genes, CXCR4 regulates neu-
trophil release from the bone marrow (56),
and consequently it modulates inflammation;
it follows that CXCR4 variants might impact
the pace of HSC replication. Equally impor-
tant, CXCR#4 participates in the control of in-
flammatory response in atherosclerosis (57, 58).
CXCR4 and its cognate ligand, CXCL12, are
central elements in the feedback loop between
HSCsand the endothelium, which regulates the
chemotactic signals that guide the homing of
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EPCs to the area of vascular injury. Further-
more, the CXCLI2 locus was found by GWAS
to be associated with myocardial infarction
(59).

As telomerase activity is robust during in-
trauterine life but repressed during extrauterine
life, it is reasonable to hypothesize that OBFC1
and TERC variants primarily affect birth L'TL
and, by inference, the size of HSC reserves at
birth. In contrast, CXCR4 might contribute to
interindividual variation in L'TL by its impact
on HSC replication and consequently influence
the contraction rate of HSC reserves. In this
way, LTL-regulating genes might be determi-
nants in the atherosclerotic process.

PROPOSED MODELS LINKING
HSC RESERVES, EXPRESSED
IN LTL DYNAMICS, WITH
ATHEROSCLEROSIS

Figure 1 portrays our overall model explaining
the relationship between atherosclerosis and
HSC reserves as expressed in LTL. The
outer loops of the diagram represent genetic
and environmental elements that might in-
dependently affect the HSC reserves and
atherosclerosis. The genetic elements include
(@) gene networks that affect HSC reserves (i.e.,

Genes

m

Atherosclerosis

Environment

Figure 1

Overall model linking the hematopoietic stem cell
(HSC) reserves with atherosclerosis. Atherosclerosis
is partially the outcome of demand for repair,
exerted by injury to the vascular endothelium on the
HSC reserves. The repair arm of the HSC reserves
is mediated by endothelial progenitor cells, and the
size of these reserves is expressed in leukocyte
telomere length. Both genetic and environmental
factors continuously impact the injury/repair
processes.
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genes that directly regulate telomere biology
and genes that modulate HSC replication), and
(b) gene networks that impact aging-related
vascular injury (e.g., genes that participate
in lipid homeostasis, insulin resistance, in-
flammation, etc.). The environmental loop
includes elements that presumably affect
both atherosclerosis and the HSC reserves
(e.g., smoking, caloric intake, and sedentary
lifestyle). For instance, smoking might in-
jure the vascular endothelium by increasing
oxidative stress but it can also impact HSC
reserves, since smoking-induced inflammation
and oxidative stress would increase HSC repli-
cation and augment telomere loss per HSC
replication. The inner loop comprises feedback
mechanisms that regulate gene-mediated
interactions between the vascular endothelium
and HSC reserves. The CXCR4-CXCLI2
network exemplifies such interactions.

CONCLUSIONS

If telomere dynamics figure in atherosclerosis,
their main impact would be exerted on HSC
reserves because of the tremendous turnover
rate of blood cells. Although the size of the
HSC reserves is largely determined at birth,
atherosclerosis itself can tax these reserves,
since oxidative stress and inflaimmation, the
hallmarks of the disease, evidently accelerate
telomere shortening in HSCs and consequently
augment the contraction of HSC reserves.
Thus, the atherosclerosis-LTL link might
be the outcome of a feedback loop in which
diminished HSC reserves beget atherosclerosis
and atherosclerosis begets diminished HSC
reserves. It is unlikely, however, that all HSCs
would completely senesce due to telomere
shortening during the human lifespan. Rather,
as humans get older, their dwindling HSC
reserves might encounter increasing difficulties
in maintaining endothelial repair functions by
EPCs. At the basic level, this concept fits the
broader view of atherosclerosis as a state of
chronic imbalance in which the injurious effect
of oxidative stress/inflammation outstrips en-
dothelial repair that depends on HSC reserves,
which, in turn, depend on telomere length. In
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this sense, the metaphor of telomeres as a clock
that both passively counts replication and ac-
tively sustains vitality of somatic cells may turn
out to be true for human HSCs. Moreover,
because birth LTL largely determines L'TL at
any age and LTL-maintenance genes such as
TERC and OBFC1 probably affect birth L'TL,
it seems that for many individuals the die for
atherosclerosis is cast at birth.

How important would it be to record the in-
dividual’s LTL dynamics from birth to adult-
hood to old age? That depends on whether op-
timal methods of LTL measurement will be de-
veloped for clinical use, how much the knowl-
edge of LTL will add to the present prog-
nostication of atherosclerosis risk factors, and
whether preventive and/or therapeutic steps

can be guided by L'TL results.
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